首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在扫描电镜下,观察了滇鼠刺(Itea yunnanensis Franch.)花的形态发生.花3朵一束,排成总状花序.花器官为轮状结构,向心发生;花萼以2/5螺旋式相继发生,5个花瓣原基几乎同步地在花萼内侧与其互生的位置发生.雄蕊单轮对萼.当雄蕊发生后,花顶中心的分生组织开始凹陷,成为浅锅状;在其周围出现一个环状的分生组织,随之,2心皮原基产生,进而发育为马蹄形.初期的心皮相互分离,随着进一步发育,心皮内卷,彼此靠近、紧贴,逐渐于腹面合生,形成2室的中轴胎座;花柱的腹维管束通过薄壁组织连通;花期柱头融合,因此该种为合生心皮.对鼠刺属(Itea)及相关类群花发育性状和花结构进行了比较,支持把鼠刺属提升为鼠刺科(Iteaceae)的观点.  相似文献   

2.
为进一步研究商陆科的系统位置提供花器官发生和发育的证据,在扫描电子显微镜下观察了商陆Phytolacca acinosa、多雄蕊商陆P. polyandra和垂序商陆P. americana的花器官发生.结果表明: 商陆属植物花被的发生均为2/5型螺旋发生.在同一个种不同的花蕾中,花被的发生有两种顺序:逆时针方向和顺时针方向.远轴侧非正中位的1枚先发生.雄蕊发生于环状分生组织.在单轮雄蕊的种中8-10枚雄蕊为近同时发生;两轮雄蕊的种8枚内轮雄蕊先发生,6-8枚外轮雄蕊随后发生,内轮雄蕊为同时发生,外轮雄蕊发生次序不规则.心皮原基也发生于环状分生组织,8-10枚心皮原基为同时发生.在后来的发育过程中,商陆的心皮发育成近离生心皮雌蕊;其他2种心皮侧壁联合发育成合生心皮雌蕊.对商陆属植物花器官发生的类型及发育形态学做了分析,结果支持商陆科在石竹目系统发育中处于原始地位的观点.  相似文献   

3.
为进一步研究商陆科的系统位置提供花器官发生和发育的证据,在扫描电子显微镜下观察了商陆Phytolacca acinosa、多雄蕊商陆P. polyandra和垂序商陆P. americana的花器官发生。结果表明: 商陆属植物花被的发生均为2/5型螺旋发生。在同一个种不同的花蕾中,花被的发生有两种顺序:逆时针方向和顺时针方向。远轴侧非正中位的1枚先发生。雄蕊发生于环状分生组织。在单轮雄蕊的种中8-10枚雄蕊为近同时发生;两轮雄蕊的种8枚内轮雄蕊先发生,6-8枚外轮雄蕊随后发生,内轮雄蕊为同时发生,外轮雄蕊发生次序不规则。心皮原基也发生于环状分生组织,8-10枚心皮原基为同时发生。在后来的发育过程中,商陆的心皮发育成近离生心皮雌蕊;其他2种心皮侧壁联合发育成合生心皮雌蕊。对商陆属植物花器官发生的类型及发育形态学做了分析,结果支持商陆科在石竹目系统发育中处于原始地位的观点。  相似文献   

4.
花叶芋(天南星科)的花器官发生   总被引:1,自引:0,他引:1  
利用扫描电镜首次观察了天南星科花叶芋(Colocasia bicolor) 的花器官发生过程。花叶芋的肉穗花序由无花被的单性花构成, 雌花发生于花序基部, 雄花发生于花序上部, 中性花位于花序中间部位。雄花: 3 或4 个初生雄蕊原基轮状发生, 随后每个初生原基一分为二, 形成6或8个次生原基; 一部分次生原基在其后的发育过程中融合, 形成5 或7 枚雄蕊; 雄花发育过程中未见雌性结构的分化; 花药的分化先于花丝; 雄蕊合生成雄蕊柱。雌花: 合生心皮, 3或4个心皮原基轮状发生, 未见雄性结构的分化。中性花来源于雌雄花序过渡带上, 属于雄蕊原基的滞后发育以及发育成熟过程中的退化; 与彩叶芋属(Caladium)不同, 此过渡区未见畸形两性花。初生雄蕊原基二裂产生次生原基的次生现象在目前天南星科花器官发生中显得比较特殊, 同时初步探讨了次生原基的融合方式。  相似文献   

5.
马桑绣球(绣球科)的花器官发生和发育   总被引:3,自引:0,他引:3  
在扫描电镜下观察了马桑绣球Hydrangea aspera孕性花的发生及发育过程。马桑绣球的花器官向心轮状发生:花萼原基以2/5螺旋式相继发生,花瓣原基几乎同步发生。花瓣开始发育时,与花萼相对的雄蕊发生。与花瓣相对的雄蕊原基与心皮原基几乎同时出现。初始心皮向上扩展,分化出花柱和柱头,向下延伸,嵌入花托,发育为下位子房。花发育成熟时,隔膜于子房的下部连续,而中部和上部不连续,即子房为不完全2室。经过与绣球属已观察过的另外5种1亚种花器官发生和发育比较,发现马桑绣球与藤绣球H. ano mala subs  相似文献   

6.
在扫描电镜下观察了桦木科(Betulaceae)铁木属花序和花的形态发生过程。结果显示, 铁木雌花序由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织, 由小花序原基分生组织分化形成1对次级苞片和2个花原基, 每个花原基分化出2个或3个心皮原基, 形成二心皮或三心皮雌蕊, 雌蕊基部有1层环状花被原基。雄花序为柔荑状, 由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织, 由小花序原基分生组织分化出3个花原基分区, 位于中央的花原基分区, 分化形成5-6枚雄蕊原基, 两侧的花原基分区, 分别分化形成3-4枚雄蕊原基, 雄蕊原基分化形成四药囊雄蕊。雄蕊原基纵裂, 但花丝纵裂没有达到基部。  相似文献   

7.
在扫描电镜下观察了观光木(Tsoongiodendron odorum Chun)花器官的发生发育。观光木的花原基最初为近圆形,随着顶端分生组织的活动,花原基边缘处出现浅凹,形成第一轮花被片原基,此时,花原基呈三角形排列,后两轮花被片原基依次发生,与前一轮互生;在内轮花被片发生的后期,最初几枚雄蕊原基几乎同时出现,呈螺旋状向顶发生,最后排列成三角圆锥状;雄蕊原基发育后期,心皮原基开始发育,形状与发育初期的雄蕊原基相似,随后心皮原基进行侧向生长,在近轴面出现浅凹,进而发育为凹槽,形成腹缝线,最后腹缝线完全愈合。腹缝线愈合现象表明观光木具有进化特征,与含笑属的亲缘关系较近。  相似文献   

8.
基部被子植物金粟兰科(Chloranthaceae)的单性花或两性花结构十分简单,雪香兰(Hedyosmum orientale)花单性、雌雄异株,花的形态及结构与其它属物种具有显著的差异,对于研究被子植物花特别是花被的起源和系统进化具有重要意义。该研究采用电子显微镜和光学显微镜观察了雪香兰单性花的器官发生及发育过程。结果表明,雌、雄花均为顶生和腋生,多个小花呈聚伞圆锥状排列。雄花外侧是苞片,每朵雄花上着生150–200个雄蕊,花轴基部着生少数退化的叶原体。苞片原基及其腋生的花原基最初呈圆丘状,随后伸长。在雄花发育过程中,苞片原基比雄蕊原基生长快,雄花原基纵向伸长,叶原体原基在基部发生,雄蕊原基自下而上发生。每2朵雌花底部合生形成小聚伞花序,每朵雌花被一苞叶包裹,由单心皮和三棱型子房构成,外覆三裂叶状花被。在雌花发育过程中,雌花原基比苞片原基生长快,花被原基首先于花顶端发生,随后花顶端中心凹陷,进一步发育成具有单心皮的子房原基。雪香兰的单性花发育不经过两性同体阶段,花分生组织只起始雄蕊器官或雌蕊器官的发育。研究结果支持雪香兰单性花是原始性状的观点,雄花叶原体与雌花三裂叶状花被同源,可能是花被(萼片与花瓣)的起源。  相似文献   

9.
利用扫描电镜(SEM)和光镜(LM)对臭椿花序及花器官的分化和发育进行了初步研究,表明:1)臭椿花器官分化于当年的4月初,为圆锥花序;2)分化顺序为花萼原基、花冠原基、雄蕊原基和雌蕊原基。5个萼片原基的发生不同步,并且呈螺旋状发生;5个花瓣原基几乎同步发生且其生长要比雄蕊原基缓慢;雄蕊10枚,两轮排列,每轮5个原基的分化基本是同步的;雌蕊5,其分化速度较快;3)在两性花植株中,5个心皮顶端粘合形成柱头和花柱,而在雄株中,5个心皮退化,只有雄蕊原基分化出花药和花丝。本研究着重观察了臭椿中雄花及两性花发育的过程中两性花向单性花的转变。结果表明,臭椿两性花及单性花的形成在花器官的各原基上是一致的(尽管时间上有差异),雌雄蕊原基同时出现在每一个花器官分化过程中,但是,可育性结构部分的形成取决于其原基是否分化成所应有的结构:雄蕊原基分化形成花药与花丝,雌蕊原基分化形成花柱、柱头和子房。臭椿单性花的形成是由于两性花中雌蕊原基的退化所造成,其机理有待于进一步研究。  相似文献   

10.
以不同发育时期的长角凤仙花Impatiens longicornuta Y.L.Chen(凤仙花科Balsaminaceae)为材料,利用扫描电镜技术观察了其花器官的分化及其发育过程。长角凤仙花为两侧对称花,具2枚侧生萼片,唇瓣囊状,旗瓣具鸡冠状突起,雄蕊5枚,子房上位,5心皮5室。其花器官分化顺序为向心式,萼片—花瓣—雄蕊—雌蕊原基。2枚侧生萼片先发生,然后近轴萼片(即唇瓣)原基和2枚前外侧萼片原基近同时发生;但是这3枚萼片原基的发育不同步,远轴的2枚前外侧萼片原基的发育渐渐滞后,然后停止发育,最后渐渐为周围组织所吸收,直至消失不见。花瓣原基中,旗瓣原基最先发生,4个侧生花瓣原基相继成对发生,且之后在基部成对愈合形成翼瓣;5枚雄蕊原基几乎同时发生,5个心皮原基轮状同时发生。本文结果支持凤仙花属植物为5基数的花,并进一步证实了唇瓣的萼片来源;此外,研究结果表明花器官早期发育资料对植物系统与进化研究具有重要参考价值。  相似文献   

11.
The systematic position of Montiniaceae remains uncertain: a relationship with Cornales has been suggested on phytochemical and embryological evidence, while molecular data point to a relationship with Solanales. We investigated the floral development and anatomy of the South African Montinia caryophyllacea to add a new set of characters for clarifying the systematic position of the family Montiniaceae. Pistillate inflorescences show a higher degree of reduction than staminate, with flowers set terminally on short lateral branches. Flowers have an irregular initiation sequence, with frequent abortions of organs. In Montinia, petals grow rapidly, and no zonal growth takes place. The gynoecium develops as a pit surrounded by a girdle. Placentation is basically parietal and becomes axillary by the postgenital fusion of placental lobes; unitegmic ovules are arranged in two parallel rows with adjacent ovules partly overlapping each other. Unisexuality is respectively attained at the stage of anther development and carpel initiation. The floral anatomy of pistillate and staminate flowers is illustrated and discussed. Observations on Montinia are compared with data of taxa from Saxifragaceae sensu stricto, Cornales, and Solanales. The absence of sympetaly in Montinia is discussed. Morphological and anatomical evidence points to a high similarity with Escalloniaceae. Although a position in the asterids is most probable, there is little support for the relationship with Solanales indicated by molecular data.  相似文献   

12.
The floral and vegetative anatomy of the small Australian genus Aphanopetalum were studied. Wood is described for the first time and is characterized by predominantly solitary pores, scalariform vessel element perforation plates with low bar numbers, imperforate tracheary elements with distinctly bordered pits, sparse axial parenchyma, and a combination of homocellular and heterocellular rayS. Starch occurs in both axial and ray parenchyma of the wood. Stems possess unilacunar, one-trace nodes and the uncommon feature of an endodermis with well-defined Casparian stripS. Leaves have anomocytic stomata, a bifacial mesophyll and semicraspedodromous venation or a combination of semicraspedodromous and brochidodromous venation. The tetramerous flowers are apetalous or have minute petals. The compound, half-inferior gynoecium consists of essentially totally united carpels. The pattern of floral vascularization resembles different Saxifragaceae sensu lalo in that the compound sepal-plane and petal-plane traces give rise to staman bundles as well as sepal, petal, and carpel wall venation in their respective planes. The ventral ovarian bundles are fused into a single ventral complex that subdivides at the top of the ovary to form ventral bundles and to supply the one ovule in each locule. Vegetative and floral features provide compelling evidence to suggest that Aphanopetalum has its nearest relatives among the Saxifragaceae sensu lato rather than Cunoniaceae. The genus is probably best treated as forming its own subfamily (or family) among the saxifragaean alliance.  相似文献   

13.
Floral development was investigated in Ruta graveolens and Psilopeganum sinense, representing two genera in the tribe Ruteae. Special attention was paid to the sequence of initiation of organ whorls in the androecium and gynoecium. The antepetalous stamens arise at the same level as the antesepalous stamens in both species. The carpels are antepetalous in both taxa, indicating the androecium in both genera is obdiplostemonous. Compared with floral ontogeny of the ancestral genus Phellodendron (Toddalioideae), the obdiplostemonous androecium is a derived condition. The floral apex in P. sinense is quadrangular before initiation of the two carpels. Additionally, there are four dorsal and four ventral traces in the ovary. Integrated morphological and anatomical evidence indicates that the bicarpellate gynoecium in Psilopeganum most likely evolved from a tetracarpellate ancestor. Considering the similarities in morphological, geographical and chromosomal features, the ancestor may be Ruta‐like. Further molecular phylogenetic and genetic studies are needed to verify this assumption.  相似文献   

14.
As a first step towards a broader floral ontogenetic study on Cornales, the flowers of four species of Hydrangeaceae (Deutzia corymbosa, Kirengeshoma palmata, Philadelphus purpurascens and Hydrangea petiolaris) were studied. In Deutzia and Kirengeshoma five sepal primordia are generally initiated, in Philadelphus only four. Sepal initiation in Kirengeshoma shows a tendency to tetramony. Deutzia has a variable sepal initiation. Petal growth was never retarded in the studied species. Initiation of the androecium in Kirengeshoma, Philadelphus and Hydrangea starts with antesepalous primary primordia, on which secondary primordia are soon formed, leading ultimately to the formation of polystaminate androecia. In Deutzia a diplostemonous androecium is formed, starting with the initiation of the antesepalous stamen primordia. Gynoecium development is similar in all species studied: on a concave floral apex, a ring meristem is initiated; it develops into a variable number of continuous carpel primordia, while the centripetally growing common margins form the septa. Initiation of the ovule primordia starts halfway up each placenta and extends in an apical, basal and lateral direction. A number of morphological problems are discussed, such as the derivation of tetramery, and evolutionary and developmental trends in the androecium and gynoecium. Kirengeshoma is well settled in Hydrangeaceae, although its exact position within the family remains uncertain. A sistergroup relationship of Hydrangeaceae with Loasaceae is supported. However, Hydrangeaceae also share features with Saxifragaceae (e.g. similar gynoecium development).  相似文献   

15.
The floral morphology and anatomy of one representative of the Parnassioideae and two of the Brexioideae are described, and some of the recent literature dealing with the Saxifragaceae sensu lato is reviewed. Comparison of the floral structure in Parnassia to that typical of the Saxifragoideae, the subfamily constituting the Saxifragaceae sensu stricto and which, therefore, may be considered to show the basic saxifragaceous characteristics, reveals little similarity. Parnassia differs in pattern of both sepal and androecial vascularization, vascularization and degree of connation of the carpels, height in the gynoecium to which ventral bundles remain compound, possession of nectariferous staminodia, and the absence of epidermal appendages. Brexia and Ixerba (both of the Brexioideae) are strikingly dissimilar in floral structure and probably should be dissociated. While the position of Ixerba is problematical, it shares more floral characters with the Escallonioideae than with either Brexia or the Saxifragoideae and is better associated with that taxon. In both Parnassia and Brexia the vascular pattern suggests derivation of the androecium from a fascicled condition: the vascular supply of each filament consists of a cylinder of closely associated collateral bundles, and each staminodial set receives a single vascular complex which subsequently divides into as many vascular strands as there are staminodia in the set.  相似文献   

16.
The vast majority of the species of family Leguminosae have an apocarpous monomerous gynoecium. However, only a few taxa regularly produce multicarpellate gynoecia. The only known species of papilionoid legumes which has both a typical “flag blossom” and more than one carpel is Thermopsis turcica (tribe Thermopsideae). We studied the floral ontogeny of T. turcica with special reference to its gynoecium initiation and development. Flowers arise in simple terminal racemes in a helical order and are subtended by bracts. Bracteoles are initiated but then suppressed. Sepals appear more or less simultaneously. Then, petals emerge and remain retarded in development until later stages. The gynoecium usually includes three carpels with an abaxial one initiating first and two adaxial carpels arising later and developing somewhat asynchronously. The abaxial carpel appears concomitant with the outer stamens and is always oriented with its cleft toward the adaxial side, while the adaxial carpels face each other with their clefts and have them slightly turned to the adaxial side. Rarely uni-, bi- or tetracarpellate flowers arise. Seed productivity of T. turcica is on approximately the same level as in unicarpellate species of Thermopsis hence supporting the fact that the multicarpellate habit is adaptive or at least not harmful in this species.  相似文献   

17.
We have examined the floral morphology and ontogeny of three mutants of Arabidopsis thaliana, Ap2-5, Ap2-6, and Ap2-7, that exhibit homeotic changes of the perianth organs because of single recessive mutations in the AP2 gene. Homeotic conversions observed are: sepals to carpels in all three mutants, petals to stamens in Ap2-5, and petals to carpels in Ap2-6. Our analysis of these mutants suggests that the AP2 gene is required early in floral development to direct primordia of the first and second whorls to develop as perianth rather than as reproductive organs. In addition, our results support one of the two conflicting hypotheses concerning the structures of the calyx and the gynoecium in the Brassicaceae.  相似文献   

18.
In this study, we evaluated the floral ontogeny of Swartzia dipetala, which has peculiar floral features compared with other legumes, such as an entire calyx in the floral bud, a corolla with one or two petals, a dimorphic and polyandrous androecium and a bicarpellate gynoecium. We provide new information on the function of pollen in both stamen morphs and whether both carpels of a flower are able to form fruit. Floral buds, flowers and fruits were processed for observation under light, scanning and transmission electron microscopy and for quantitative analyses. The entire calyx results from the initiation, elongation and fusion of three sepal primordia. A unique petal primordium (or rarely two) is produced on the adaxial side of a ring meristem, which is formed after the initiation of the calyx. The polyandrous and dimorphic androecium also originates from the activity of the ring meristem. It produces three larger stamen primordia on the abaxial side and numerous smaller stamen primordia on the adaxial side. These two types of stamens bear morphologically similar ripening pollen grains. However, prior to the dehiscence of thecae and presentation of pollen in the anther, only the pollen grains of the larger stamens contain amyloplasts. Two carpel primordia are initiated as distinct protuberances, alternating with the larger stamens, in a slightly inner position in the floral meristem, constituting the bicarpellate gynoecium. Both carpels are able to form fruit, although only one fruit is generally produced in a flower. The increase in gynoecium merism probably results in an increase in the surface deposition of pollen grains and consequently in the chance of pollination. This is the first study to thoroughly investigate organogenesis and the ability of the carpel to form fruit in a bicarpellate flower from a member of Fabaceae, in addition to the pollen ultrastructure in the heteromorphic stamens associated with the ‘division of labour’ sensu Darwin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 303–320.  相似文献   

19.
Ruozhu Lin  Bei Cui  Wenxia Zhao 《Phyton》2019,88(3):285-293
The flowers of the hemiparasitic family Loranthaceae are always subtended by a rimmed structure known as the calyculus. The origin and identity of the calyculus have been disputed for more than a century. Various hypotheses have been proposed, for example, an outgrowth of the axis, a reduced calyx, and a bracteolar (prophyllar) origin, but controversies remain. To obtain a plausible explanation of the origin of the calyculus, we investigated the flowers of Loranthus tanakae using scanning electron microscopy and light microscopy to observe the entire developmental process of the floral parts. Our results show that bracts are not present in L. tanakae. The calyculus, which lacks serving vascular bundles, initiates as a semicircular primordium and then develops into a circular structure by an adnation at both sides. The flower primordium usually cleaves into six petals from its centre along a whorled pattern in two series with three petals each, before or after the calyculus closed. Isomerous stamen primordia probably follow the same initiation pattern as petals do. Several carpels of different sizes initiate simultaneously as a united primordium. We support the hypotheses that the calyculus is of bract or bracteole origin due to its independent initiation from the inflorescence rachis, its similar morphology and positioning as the bract or bracteole, and that having no developmental relationship with the petals. We suggest keeping the usage of the term “calyculus”. Loranthus flowers should be considered monochlamydeous with three whorls of floral parts, namely petal, androecium, and gynoecium.  相似文献   

20.
The floral development and anatomy ofChrysosplenium alternifolium were studied with the scanning electron microscope and light microscope to understand the initiation sequence of the floral organs and the morphology of the flower, and to find suitable floral characters to interpret the systematic position of the genus within the Saxifragaceae. The tetramerous flower shows a highly variable initiation sequence. The median sepals and first stamens arise in a paired sequence resembling a dimerous arrangement, but the first sepal and stamen arise on the side opposite to the bract. Transversal sepals and stamens emerge sequentially, as one side often precedes the other; sepals and stamens occasionally arise on common primordia. Initiation of the gynoecium is more constant with two median carpel primordia arising on a sunken floral apex. Several flowers were found to be pentamerous with a 2/5 initiation sequence. Flowers were invariably found to be apetalous without traces of petals in primordial stages; this condition is interpreted as an apomorphy. It is postulated that the development of a broad gynoecial nectary is responsible for the occurrence of an obdiplostemonous androecium. The gynoecium shows a number of anatomical particularities not observed in other Saxifragaceae. The presence and distribution of colleters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号