首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 25-hydroxycholesterol (25-OH-cholesterol) and chenodeoxycholic (CDC) acid on apoprotein secretion, low-density lipoprotein receptor activity, and [3H]triacylglycerol secretion in Hep G2 cells was studied. Both 25-OH-cholesterol and CDC acid increased the secretion of apolipoprotein (apo) E by Hep G2 cells. The secretion of apo A-I was slightly lowered (less than 10% disease). The maximal increase in apo E secretion was observed in culture medium containing 2 micrograms of 25-OH-cholesterol/ml or 10 micrograms of CDC acid/ml plus 10% fetal calf serum. Cholesterol, 7-OH-cholesterol and other bile acids were ineffective in inducing increases in apo E secretion. Another cholesterol synthesis inhibitor, mevinolin, was also ineffective in generating an increase in apoprotein secretion. The data indicated a specific interaction between 25-OH-cholesterol or CDC acid and apo E secretion in Hep G2 cells. Cholesterol synthesis, as measured by the incorporation of [14C]acetic acid into sterols, was repressed in Hep G2 cells in the presence of 25-OH-cholesterol (17% of control value). CDC acid, on the other hand, increased [14C]acetic acid incorporation (156% of control value). The number of LDL receptors in Hep G2 cells was decreased after incubation with 25-OH-cholesterol (62% of control value), but increased significantly after incubation with CDC acid (149% of control value). The secretion of [3H]triacylglycerol by Hep G2 cells incubated with 25-OH-cholesterol was greatly increased (248% of control value). On the contrary, CDC acid did not cause any increase in [3H]triacylglycerol secretion. The above results suggest that 25-OH-cholesterol and CDC acid have different effects on lipid metabolism in Hep G2 cells. The mRNA levels of apo E increased in cells preincubated with 25-OH-cholesterol and CDC acid, which suggested that the increase in apo E secretion is at least partly due to an increase in synthesis.  相似文献   

2.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

3.
Hep G2 cells were used to study the relationship between apolipoprotein synthesis and secretion, as revealed by their interaction with agents modulating these processes. Cycloheximide inhibited the secretion of both apolipoproteins (apo) AI and B, but the reduction in apo AI secretion was evident at earlier times. Monensin also inhibited secretion of apo AI and apo B, but only apo AI accumulated intracellularly. Pulse-chase studies showed that, at concentrations of monensin that had no effect on total protein synthesis, apo B synthesis was specifically inhibited. Triacylglycerol synthesis was inhibited to the same extent as apo B synthesis, but this preceded the latter inhibition and unlike apo B there was an accumulation of intracellular triglyceride. These results suggest that distinctive mechanisms modulate the synthesis and secretion of apo AI and apo B, and that apo B synthesis can be specifically inhibited by mechanisms that initially block triglyceride production.  相似文献   

4.
Lipid and lipoprotein metabolism in Hep G2 cells   总被引:6,自引:0,他引:6  
Lipid composition, lipid synthesis and lipoprotein secretion by the Hep G2 cell line have been studied with substrate and insulin supplied under different conditions. The lipid composition of Hep G2 cells was close to that of normal human liver, except for a higher content in sphingomyelin (P less than 0.005) and a lower phosphatidylcholine/sphingomyelin ratio. Most of the [14C]triacylglycerols secreted into the medium were recovered by ultracentrifugation at densities of 1.006 to 1.020 g/ml. The main apolipoproteins secreted were apo B-100 and apo A-I. Hep G2 mRNA synthesized in vitro the pro-apolipoproteins A-I and E. Triacylglycerol secretion was 7.38 +/- 1.04 micrograms/mg cell protein per 20 h with 5.5 mM glucose in the medium and increased linearly with glucose concentration. Oleic acid (1 mM) increased the incorporation of [3H]glycerol into the medium and cell triacylglycerols by 251 and 899%, with a concomitant increment in cell triacylglycerols and cholesterol ester. Insulin (1 mU or 7 pmol/ml) inhibited triacylglycerol secretion and [35S]methionine incorporation into secreted protein by 47 and 28%, respectively, with a corresponding increase in the cells. Preincubation of cells with 2.5-10 mM mevalonolactone decreased the incorporation of [14C]acetate into cholesterol 6.2-fold, indicating an inhibitory effect on HMG-CoA reductase. It is concluded that in spite of some differences between Hep G2 and normal human hepatocytes, this line offers an alternative and reliable model for studies on liver lipid metabolism.  相似文献   

5.
Male golden hamsters fed a glucose diet as a model for cholesterol gallstone formation were used to investigate the effect of CS-514 on the lithogenicity of bile. Treatment with 0.05% (w/w) CS-514 in the diet for 1-4 weeks caused a decrease in plasma cholesterol and triacylglycerol levels. A marked increase in hepatic hydroxymethylglutaryl-CoA reductase activity in vitro and also an increased de novo cholesterol synthesis in the liver were induced by treatment with CS-514 for 1-4 weeks. The concentration of free cholesterol in liver microsomes and the cholesterol 7 alpha-hydroxylase activity were both decreased by treatment with CS-514 for 1 week, but were not affected by treatment for 4 weeks. The cholesterol output into bile and the lithogenic index of bile were double those of the control (glucose diet only) following treatment with CS-514 for 4 weeks, and the subsequent incidence of cholesterol gallstone formation was elevated. The content of free cholesterol and cholesterol ester in the liver was not affected by treatment with CS-514 for 4 weeks. These results suggest that long-term treatment with CS-514 causes a compensatory increase in the synthesis of hydroxymethylglutaryl-CoA reductase which leads to augmented hepatic de novo cholesterol synthesis and subsequent increased cholesterol output followed by an increase in the lithogenicity of bile. CS-514 apparently does not prevent cholesterol gallstone formation in those examples where the mechanism is thought to be due to augmented hepatic de novo cholesterol synthesis (type IV hyperlipidemia).  相似文献   

6.
Serum low-density lipoprotein (LDL) concentration is a major determinant of susceptibility to the development of atherosclerosis. A major component of the protein moiety of LDL and its precursor very-low-density lipoprotein is apolipoprotein B (apo B). The human hepatoma cell line, Hep G2, was used as a model for the investigation of mechanisms which control hepatic secretion of the apo B and lipid components of lipoproteins. Using a sensitive immunoradiometric assay for apo B developed in this laboratory, we showed that bovine serum albumin inhibited and glucose, and fatty acids enhanced the rate of accumulation of apo B in the culture medium of Hep G2 cells. However, these substances did not necessarily affect LDL lipids in the same way as apo B. This finding appeared to be due to Hep G2 cells expressing lipase activities which led to triacylglycerol and phospholipid hydrolysis and lipid reuptake. Reuptake of apo B also occurred, but its rate of accumulation in the culture medium suggested it was a closer reflection of its true secretory rate.  相似文献   

7.
8.
CS-514 is a tissue-selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a key enzyme in cholesterol synthesis. For the microsomal enzyme from rat liver, the mode of inhibition is competitive with respect to hydroxymethylglutaryl-CoA, and the Ki value is 2.3 X 10(-9) M. CS-514 also strongly inhibited the sterol synthesis from [14C]acetate in cell-free enzyme systems from rat liver and in freshly isolated rat hepatocytes; the concentrations required for 50% inhibition were 0.8 ng/ml and 2.2 ng/ml, respectively. On the other hand, the inhibition by CS-514 was much less in the cells from nonhepatic tissues such as freshly isolated rat spleen cells, and cultured mouse L cells and human skin fibroblasts. In addition, the cellular uptake of 14C-labeled CS-514 by isolated rat spleen cells or mouse L cells was less than one-tenth of that by isolated hepatocytes. These differences between hepatic and nonhepatic cells were further confirmed by the fact that CS-514 orally administered to rats inhibited sterol synthesis selectively in liver and intestine, the major sites of cholesterogenesis. CS-514 markedly reduced serum cholesterol levels in dogs, monkeys and rabbits, including Watanabe heritable hyperlipidemic (WHHL) rabbits, an animal model for familial hypercholesterolemia in man, but did not reduce those in rats and mice. In the former case, preferential lowering of atherogenic lipoproteins was observed in all of the animals tested. The biliary neutral sterols significantly decreased, whereas the amount of biliary bile acids was not affected by administration of the drug to dogs.  相似文献   

9.
N B Javitt 《FASEB journal》1990,4(2):161-168
Hep G2, a liver cell line derived from a human hepatoblastoma that is free of known hepatotropic viral agents, has been found to express a wide variety of liver-specific metabolic functions. Among these functions are those related to cholesterol and triglyceride metabolism. Confluent Hep G2 monolayers express normal low-density lipoprotein (LDL) receptors and continue to internalize and metabolize chylomicrons, very low-density lipoproteins (VLDL), LDL, and high-density lipoproteins. In lipoprotein-free medium, apolipoproteins A-I, A-II, B, C, and E accumulate in the medium together with cholesterol, cholesteryl ester, triglyceride, and all the primary bile acids. The regulation of their synthesis and secretion is not fully known and their interrelationships have not been established. Because Hep G2 cells express these and other components of cholesterol and triglyceride metabolism, they are a microcosm for studying the central role of the liver.  相似文献   

10.
Calmodulin binding to human spectrin   总被引:1,自引:0,他引:1  
Human hepatocellular carcinoma cells (Hep G2) were shown to secrete apo A-I as a proprotein . No apo A-I synthesis could be detected with endothelial cells from human umbilical cord veins. Conversion of proapo A-I into apo A-I is a slow (of the order of hours) process, mediated by a Ca2+/Mg2+-dependent enzyme which is present on the surface of plasma lipoprotein particles, endothelial cells and Hep G2 cells, and is probably synthesized by Hep G2 cells.  相似文献   

11.
1. The effects of 26-aminocholesterol and 26-thiacholesterol on cholesterol synthesis and LDL (low-density lipoprotein)-receptor activity were compared with naturally occurring 26-hydroxycholesterol utilizing both human fibroblasts and hepatoma (Hep G2) cells. 2. At equimolar concentrations (0.625 microM), down-regulation of LDL-receptor activity and cholesterol synthesis was greater with human fibroblasts than with Hep G2 cells. 3. At much higher concentrations (5-20 microM) the 26-thia analogue had little effect on either cholesterol synthesis or LDL-receptor activity.  相似文献   

12.
13.
1. The effect of the Ca2+-channel blocker diltiazem on hepatic apolipoprotein B (apo B) synthesis and secretion was studied in 12-18 h cultures of collagenase-dispersed rat hepatocytes. 2. The presence of diltiazem in the medium decreased apo B secretion by hepatocytes in a concentration-dependent manner. At 25 microM, diltiazem inhibited apo B secretion by approx. 36%, but there was no evidence of intracellular accumulation of apo B. 3. The inhibition of apo B secretion by hepatocytes was significantly correlated with cell-associated diltiazem (r = 0.72, P less than 0.01). 4. The rate of apo B secretion remained linear over 16 h even in the presence of 50 microM-diltiazem. 5. At diltiazem concentrations in the medium which were inhibitory for apo B secretion, [14C]acetate incorporation into cellular lipids and [35S]methionine incorporation into protein were enhanced. 6. Diltiazem inhibited the secretion of the apo B variants with a preferential inhibition of the higher-molecular-mass form of apo B (apo BH) over the lower-molecular-mass form (apo BL) at diltiazem concentrations in the medium greater than 25 microM. 7. Together, these results suggest that Ca2+ may play an important role in the synthesis and secretion of apo B-containing lipoproteins.  相似文献   

14.
15.
The preventive effects of simvastatin (MK-733) and pravastatin (CS-514), 3-hydroxy-3-methylglutarylcoenzyme A (HMG-CoA) reductase inhibitors, on hypercholesterolemia induced by 0.25% cholesterol feeding were compared in rabbits. MK-733 (6, 2 and 0.7 mg/kg) was found to prevent the increase in serum total cholesterol levels dose-dependently. High dose CS-514 (18 mg/kg) also limited the increase in the cholesterol levels, but medium (6 mg/kg) and low doses (2 mg/kg) of CS-514 were ineffective in preventing it. MK-733 inhibited the increase in VLDL and LDL cholesterol levels dose-dependently. MK-733 suppressed the increase in serum phospholipid levels. MK-733 inhibited the accumulation of cholesterol in the liver. The high dose of CS-514 also limited it. High dose MK-733 (6 mg/kg) reduced the cholesterol concentration in gallbladder bile. Neither MK-733 nor CS-514 affected bile acid excretion in the gallbladder bile. High dose MK-733 decreased the lithogenic index. MK-733 increased the number of LDL receptors, and high dose CS-514 also increased it. The suppressive effect of CS-514 on serum cholesterol levels at 18 mg/kg was found to be less than that of MK-733 at 0.7 mg/kg.  相似文献   

16.
We have utilized the human hepatocellular carcinoma cell line, Hep G2, to study the effects of low density lipoproteins (LDL), high density lipoproteins (HDL), and free cholesterol on apolipoprotein (apo) A-I mRNA levels. Incubation of the Hep G2 cells with LDL and free cholesterol led to a significant increase in the cellular content of cholesterol without any effect on the yield of total RNA or in the cellular protein content. Our studies established that incubation with LDL or free cholesterol increased the relative levels of apoA-I mRNA in the Hep G2 cells. In contrast with cholesterol loading, HDL had the effect of lowering the levels of apoA-I mRNA. These results indicate the LDL and HDL pathways as well as intracellular cholesterol may be important in apoA-I gene expression and regulation.  相似文献   

17.
Previous studies indicated that synthesis of B beta chain may be a rate-limiting factor in the production of human fibrinogen since Hep G2 cells contain surplus pools of A alpha and gamma but not of B beta chains, and fibrinogen assembly commences by the addition of preformed A alpha and gamma chains to nascent B beta chains attached to polysomes. To test whether B beta chain synthesis is rate limiting Hep G2 cells were transfected with B beta cDNA, and its effect on fibrinogen synthesis and secretion was measured. Two sets of stable B beta cDNA-transfected Hep G2 cells were prepared, and both cell lines synthesized 3-fold more B beta chains than control cells. The B beta-transfected cells also synthesized and secreted increased amounts of fibrinogen. Transfection with B beta cDNA not only increased the synthesis of B beta chain but also increased the rate of synthesis of the other two component chains of fibrinogen and maintained surplus intracellular pools of A alpha and gamma chains. Transfection with B beta cDNA did not affect the synthesis of albumin, transferrin, or anti-chymotrypsin and had a small inhibitory effect on the synthesis of C-reactive protein. Taken together these studies demonstrate that increased B beta chain synthesis specifically causes increased production of the other two component chains of fibrinogen and that unequal and surplus amounts of A alpha and gamma chains are maintained intracellularly.  相似文献   

18.
Obesity is associated with increased serum endocannabinoid (EC) levels and decreased high-density lipoprotein cholesterol (HDLc). Apolipoprotein A-I (apo A-I), the primary protein component of HDL is expressed primarily in the liver and small intestine. To determine whether ECs regulate apo A-I gene expression directly, the effect of the obesity-associated ECs anandamide and 2-arachidonylglycerol on apo A-I gene expression was examined in the hepatocyte cell line HepG2 and the intestinal cell line Caco-2. Apo A-I protein secretion was suppressed nearly 50% by anandamide and 2-arachidonoylglycerol in a dose-dependent manner in both cell lines. Anandamide treatment suppressed both apo A-I mRNA and apo A-I gene promoter activity in both cell lines. Studies using apo A-I promoter deletion constructs indicated that repression of apo A-I promoter activity by anandamide requires a previously identified nuclear receptor binding site designated as site A. Furthermore, anandamide-treatment inhibited protein-DNA complex formation with the site A probe. Exogenous over expression of cannabinoid receptor 1 (CBR1) in HepG2 cells suppressed apo A-I promoter activity, while in Caco-2 cells, exogenous expression of both CBR1 and CBR2 could repress apo A-I promoter activity. The suppressive effect of anandamide on apo A-I promoter activity in Hep G2 cells could be inhibited by CBR1 antagonist AM251 but not by AM630, a selective and potent CBR2 inhibitor. These results indicate that ECs directly suppress apo A-I gene expression in both hepatocytes and intestinal cells, contributing to the decrease in serum HDLc in obese individuals.  相似文献   

19.
Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells   总被引:1,自引:0,他引:1  
Summary. Taurine has been reported to enhance cholesterol 7α-hydroxylase (CYP7A1) mRNA expression in animal models. However, no in vitro studies of this effect have been reported. The Hep G2 human hepatoma cell line has been recognized as a good model for studying the regulation of human CYP7A1. This work characterizes the effects of taurine on CYP7A1 mRNA levels of Hep G2 cells in a dose- and time-dependent manner. In the dose-dependent experiment, Hep G2 cells were treated with 0, 2, 10 or 20 mM taurine in the presence or absence of cholesterol 0.2 mM for 48 h. In the time-dependent experiment, Hep G2 cells were treated with 0 or 20 mM taurine for 4, 24 and 48 h with and without cholesterol 0.2 mM. Our data revealed that taurine showed time- and dose-response effects on CYP7A1 mRNA levels in Hep G2 cells. However, glycine – a structural analogue of taurine – did not have an effect on CYP7A1 gene expression. These results show that, in agreement to previous studies on animal models, taurine induces the mRNA levels of CYP7A1 in Hep G2 cells, which could enhance cholesterol conversion into bile acids. Also, Hep G2 cell line may be an appropriate model to study the effects of taurine on human cholesterol metabolism.  相似文献   

20.
The effects of oleic acid on the biosynthesis and secretion of VLDL (very-low-density-lipoprotein) apoproteins and lipids were investigated in isolated perfused rat liver. Protein synthesis was measured by the incorporation of L-[4,5-3H]leucine into the VLDL apoproteins (d less than 1.006) and into apolipoproteins of the whole perfusate (d less than 1.21). Oleate did not affect incorporation of [3H]leucine into total-perfusate or hepatic protein. The infusion of oleate, however, increased the mass and radioactivity of the VLDL apoprotein in proportion to the concentration of oleate infused. Uptake of oleate was similar with livers from fed or fasted animals. Fasting itself (24 h) decreased the net secretion and incorporation of [3H]leucine into total VLDL apoprotein and decreased the output of VLDL protein by the liver. A linear relationship existed between the output of VLDL triacylglycerol (mumol/h per g of liver) and secretion and/or synthesis of VLDL protein. Net output of VLDL cholesterol and phospholipid also increased linearly with VLDL-triacylglycerol output. Oleate stimulated incorporation of [3H]leucine into VLDL apo (apolipoprotein) E and apo C by livers from fed animals, and into VLDL apo Bh, B1, E and C by livers from fasted rats. The incorporation of [3H]leucine into individual apolipoproteins of the total perfusate lipoprotein (d less than 1.210 ultracentrifugal fraction) was not changed significantly by oleate during perfusion of livers from fed rats, suggesting that the synthesis de novo of each apolipoprotein was not stimulated by oleate. This is in contrast with that observed with livers from fasted rats, in which the synthesis of the total-perfusate lipoprotein (d less than 1.210 fraction) apo B, E and C was apparently stimulated by oleate. The observations with livers from fed rats suggest redistribution of radioactive apolipoproteins to the VLDL during or after the process of secretion, rather than an increase of apoprotein synthesis de novo. It appears, however, that the biosynthesis of apo B1, Bh, E and C was stimulated by oleic acid in livers from fasted rats. Since the incorporations of [3H]leucine into the VLDL and total-perfusate apolipoproteins were increased in fasted-rat liver when the fatty acid was infused, part of the apparent stimulated synthesis of the VLDL apoprotein may be in response to the increased formation and secretion of VLDL lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号