Recently, a corona virus disease (COVID-19) caused by a novel corona virus (sevier acute respiratory syndrome corona virus 2; SARS-CoV-2), rapidly spread throughout the world. It has been resulted an unprecedented public health crisis and has become a global threat. WHO declared it as a pandemic due to rapid transmission and severity of the disease. According to WHO, as of 22nd of August 2020, the disease spread over 213 countries of the world having 22,812,491 confirmed cases and 795,132 deaths recorded worldwide. In the absence of suitable antiviral drugs and vaccines, the current pandemic has created an urgent need for accurate diagnostic tools that would be helpful for early detection of the patients. Many tests including classical and high-throughput techniques have developed and obtained U.S. Food and drug administration (FDA) approval. However, efforts are being made to develop new diagnostic tools for detection of the disease. Several molecular diagnostic tests such as real-time-polymerase chain reaction, real-time isothermal loop-mediated amplification (RT-LAMP), full genome analysis by next-generation sequencing, clustered regularly interspaced short palindromic repeats technique and microarray-based assays along with other techniques such as computed tomography scan, biomarkers, biosensor, nanotechnology, serological test, enzyme-linked immunosorbent assay (ELISA), isolation of viral strain in cell culture are currently available for diagnosis of COVID-19 infection. This review provides a brief overview of promising high-throughput techniques currently used for detection of SARS-CoV-2, along with their scope and limitations that may be used for effective control of the disease. 相似文献
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. Intermediate horseshoe bats (Rhinolophus affinis) are hosts of RaTG13, the second most phylogenetically related viruses to SARS-CoV-2. We report the binding between intermediate horseshoe bat ACE2 (bACE2-Ra) and SARS-CoV-2 receptor-binding domain (RBD), supporting the pseudotyped SARS-CoV-2 viral infection. A 3.3 Å resolution crystal structure of the bACE2-Ra/SARS-CoV-2 RBD complex was determined. The interaction networks of Patch 1 showed differences in R34 and E35 of bACE2-Ra compared to hACE2 and big-eared horseshoe bat ACE2 (bACE2-Rm). The E35K substitution, existing in other species, significantly enhanced the binding affinity owing to its electrostatic attraction with E484 of SARS-CoV-2 RBD. Furthermore, bACE2-Ra showed extensive support for the SARS-CoV-2 variants. These results broaden our knowledge of the ACE2/RBD interaction mechanism and emphasize the importance of continued surveillance of intermediate horseshoe bats to prevent spillover risk. 相似文献
It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge. 相似文献
COVID-19 has spread surprisingly fast worldwide, and new variants continue to emerge. Recently, the World Health Organization acknowledged a new mutant strain “Omicron”, with children were accounting for a growing share of COVID-19 cases compared with other mutant strains. However, the clinical and immunological characteristics of convalescent pediatric patients after Omicron infection were lacking. In this study, we comparatively analyzed the clinical data from pediatric patients with adult patients or healthy children and the effects of SARSCoV-2 vaccine on the clinical and immune characteristics in convalescent pediatric patients. Our results indicated that convalescent pediatric patients had unique clinical and immune characteristics different from those of adult patients or healthy children, and SARS-CoV-2 vaccination significantly affected on the clinical and immune characteristics and the prevention of nucleic acid re-detectable positive (RP) in convalescent patients. Our study further deepens the understanding of the impact of Omicron on the long-term health of pediatric patients and provides a valuable reference for the prevention and treatment of children infected with Omicron. 相似文献
The coronavirus disease 2019 (COVID-19) broke out in early December 2019 in Wuhan, China and escalated into a global pandemic. There is an urgent need to understand the biology of SARS-CoV-2. In this letter, we report the isolation and characterization of seven isolates of SARS-CoV-2. Results show that our viruses have 99% sequence identity with published virus sequences. In addition, all viruses grew well in Vero cells, and one of the viruses had a deletion mutation after short passage. These results shall facilitate the understanding of the characteristics of SARS-CoV-2 in vitro. 相似文献
Chlamydia trachomatis is a leading cause of sexually transmitted infection. Diagnostic methods with easy non-invasive sample collection are important to increase testing and hence to reduce the spread of this infection. To enable more use of urine samples in C. trachomatis diagnostics, automation is an absolute requirement since obtaining high-quality DNA from urine specimens involves extensive processing.
Here, we present a study in which a new automated sample preparation method, BUGS'n BEADS™ STI (BnB STI), was used up-front of the BDProbeTec™ ET end point analysis and compared with the full BDProbeTec™ ET method to analyze C. trachomatis in 1002 urine samples.
The BnB STI system represents a new concept within magnetic sample preparation in which bacteria are first isolated from the sample material followed by purification of bacterial nucleic acid using the same magnetic particles. Similar sensitivity and specificity were obtained with both methods. None of the samples processed with BnB STI inhibited the BDProbeTec™ ET test whereas 1.8% showed inhibition when processed according to the manual BDProbeTec™ ET DNA preparation method. Moreover, the average MOTA scores obtained with the BnB STI system were 48% higher for all amplification controls and 57% higher for positive samples, compared to the manual sample preparation. Based on these results and the significant reduction in hands-on-time for urine sample processing, the automated BnB STI sample preparation method was implemented for routine analysis of C. trachomatis from urine samples. 相似文献
SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) pandemic, attacks multiple organs of the human body by binding to angiotensin-converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but also an important endogenous antagonist of the renin-angiotensin system (RAS). A large number of studies have shown that ACE2 can reverse myocardial injury in various cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role in the cardiovascular system to combat the negative effects of the ACE/angiotensin II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 in cardiac protection remains unclear. Some approaches for enhancing ACE2 expression in CVDs have been suggested, which may provide targets for the development of novel clinical therapies. In this review, we aimed to identify and summarize the role of ACE2 in CVDs. 相似文献