首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of preincubation of rat liver post-mitochondrial supernatant with NaF and okadaic acid on the subcellular distribution of CTP: phosphocholine cytidylyltransferase activity was investigated. NaF (20 mM) inhibited the time-dependent activation of cytidylyltransferase activity in post-mitochondrial supernatant. Subcellular fractionation of the post-mitochondrial supernatant revealed that cytidylyltransferase activity in the microsomal fraction was decreased and activity in the cytosolic fraction increased with time of preincubation with NaF compared to controls. Okadaic acid is a specific and potent inhibitor of type 1 and 2A phosphoprotein phosphatases. Preincubation of cytosol with 5 microM okadaic acid inhibited the time-dependent activation of cytosolic cytidylyltransferase activity. Preincubation of post-mitochondrial supernatants with 5 microM okadaic acid inhibited the time-dependent activation of cytidylyltransferase activity by 13% at 45 min and 16% at 60 min of preincubation compared to controls. Microsomal cytidylyltransferase activity was decreased 27% at 45 min and 31% at 60 min with a corresponding retention of cytosolic cytidylyltransferase activity of 21% at 45 min and 37% at 60 min of preincubation with okadaic acid compared to controls. We postulate that the activity of the type 1 and/or type 2A phosphoprotein phosphatases affect the subcellular distribution of CTP: phosphocholine cytidylyltransferase activity in rat liver.  相似文献   

2.
We report CTP:phosphocholine cytidylyltransferase (CT) as another target enzyme of sphingosine actions in addition to the well-characterized protein kinase C. Effects of sphingosine and lysophingolipids were studied on the activity of purified cytidylyltransferase prepared by the method of Weinhold et al. (Weinhold, P. A., Rounsifer, M.E., and Feldman, D.A. (1986) J. Biol. Chem. 261, 5104-5110). The sphingolipids were tested as components of egg phosphatidylcholine (PC) vesicles, 25 mol% sphingosine inhibited the CT activity by about 50%. The inhibition of CT by sphingosine and lysosphingolipids was reversible. Sphingosine was found to be a reversible inhibitor of CT with respect to the activating lipids such as phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and fatty acid:phosphatidylcholine vesicles. Egg PC vesicles containing sphingosine, psychosine (galactosylsphingosine), glucopsychosine (glucosylsphingosine), and lysosphingomyelin (sphingosylphosphorylcholine) suppressed the activation by PC/oleic acid vesicles, whereas the parent sphingolipids did not. Egg PC vesicles containing oleylamine and hexadecyltrimethylamine inhibited CT activity, whereas egg PC-octylamine vesicles did not alter the enzyme activity. This indicates the importance of an amino group and long alkyl chain. LysoPC, a known detergent, did not inhibit the enzyme activity under the same assay conditions in which sphingosine inhibited. These results are the first report of a lipid inhibitor of purified CT.  相似文献   

3.
Chlorpromazine (25 microM) and trifluoperazine (25 microM) inhibited by 5-fold the activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme for phosphatidylcholine biosynthesis, in rat liver cytosol. Addition of saturating amounts of rat liver phospholipid to the enzyme assay rapidly reversed the drug-mediated inhibition. Three-fold or greater concentrations of these drugs were required to produce a 50% inhibition of the microsomal cytidylyltransferase. Incubation of rat hepatocytes with 20 microM trifluoperazine or chlorpromazine did not inhibit phosphatidylcholine biosynthesis. These results provide additional evidence for the hypothesis that the active form of cytidylyltransferase is on the endoplasmic reticulum and the enzyme in cytosol appears to be latent.  相似文献   

4.
We have purified CTP:phosphorylcholine cytidylyltransferase from rat liver cytosol 2180-fold to a specific activity of 12,250 nmol/min/mg of protein. The purified enzyme was stable at -70 degrees C in the presence of Triton X-100 and 0.2 M phosphate. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide electrophoresis. Separation by sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the purified enzyme contained subunits with Mr of 39,000 and 48,000. Gel filtration analysis indicated that the native enzyme was a tetramer containing two 39,000 and two 48,000 subunits. The purified enzyme appeared to bind to Triton X-100 micelles, one molecule of tetramer/micelle. Maximal activity was obtained with 100 microM phosphatidylcholine-oleic acid vesicles (8-10-fold stimulation). Phosphatidylglycerol produced a 4-5-fold increase in activity at 10 microM. The pH optimum and true Km values for CTP and phosphorylcholine were similar to those reported previously for crude preparations of cytidylyltransferase. The overall behavior of cytidylyltransferase during purification and subsequent analysis suggested that it has hydrophobic properties similar to those exhibited by membrane proteins.  相似文献   

5.
6.
Two forms of CTP:phosphocholine cytidylyltransferase were identified in rat liver cytosol by gel filtration chromatography. The low molecular weight form (L form) is the major form in fresh cytosol. The enzyme associates into a high molecular weight form (H form) upon storage of the cytosol at 4 degrees C. Aggregation of the purified L form of cytidylyltransferase is caused by total rat liver lipids, neutral lipids, diacylglycerol, or phosphatidylglycerol. Diacylglycerol was the only lipid isolated from the rat liver that caused aggregation of the purified enzyme. Although the addition of diacylglycerol to the cytosol did not change the amount of aggregation of the enzyme, a 2.5-fold increase in H form was observed in cytosol pretreated with phospholipase C, or in cytosol from rats fed a high cholesterol diet. In both of these cytosolic preparations, the concentration of diacylglycerol was elevated twofold. Phosphatidylglycerol did not seem to affect the association of the enzyme in cytosol since it is present in very low concentrations in the rat liver cytosol, and its degradation in cytosol by a specific phospholipase did not affect the rate of aggregation. The results suggest that diacylglycerol in an appropriate form is required for association of cytidylyltransferase in rat liver cytosol.  相似文献   

7.
We reported previously the purification of CTP:phosphorylcholine cytidylyltransferase from rat liver (Weinhold, P. A., Rounsifer, M. E., and Feldman, D. A. (1986) J. Biol. Chem. 261, 5104-5110). The purified enzyme appeared to contain equal amounts of two nonidentical proteins, with Mr of about 38,000 and 45,000. We have now separated and purified these proteins. Polyacrylamide electrophoresis in the presence of sodium dodecyl sulfate indicated that each protein was homogeneous. The 45,000 protein contained the catalytic activity. Analysis by gel filtration chromatography and glycerol gradient centrifugation indicated that the 38,000 and 45,000 proteins in the purified cytidylyltransferase were independently associated with Triton X-100 micelles. The apparent Mr of the complexes suggested that a tetramer of each protein was bound to one Triton X-100 micelle. The isolated 45,000 catalytic protein had the same lipid requirement and kinetic properties as the purified cytidylyltransferase containing both proteins. Enzyme activity was stimulated to maximal values by phosphatidylcholine vesicles containing 9 mol % of either oleic acid, phosphatidylinositol, or phosphatidylglycerol. The amino acid compositions of the isolated 38,000 and 45,000 proteins were distinctly different. Overall, the results suggested that a tetramer of the 45,000 protein possessed nearly optimal catalytic activity. A functional role of the 38,000 protein as part of a cytidylyltransferase enzyme complex could not be documented. However, the need for stabilizing concentrations of Triton X-100 in the purified enzyme preparation may have prevented the association of the two proteins.  相似文献   

8.
Experimental evidence is reported that the addition in vitro of a polyunsaturated soybean phospholipid material (EPL) to a CTP:PC cytidylyltransferase preparation from rat liver (E.C. 2.7.7.15) produces noticeable stimulation of this enzymatic activity. Preincubation for different time intervals of EPL under air or oxygen further stimulates the activating effects. Little influence is exerted on the same enzyme by saturated lipids, such as dipalmitoyl-sn-glycero-3-phosphorylcholine and distearoyl-sn-glycero-3-phosphorylcholine. It is proposed that the lipid components of the EPL which exert the stimulatory action may be lyso-phospholipid moieties derived from EPL upon preincubation or directly present in the product. The biological significance of these activations in liver tissue is discussed.  相似文献   

9.
Bile acid coenzyme A:amino acid N-acyltransferase (BAT) is responsible for the amidation of bile acids with the amino acids glycine and taurine. To quantify total BAT activity in liver subcellular organelles, livers from young adult male and female Sprague-Dawley rats were fractionated into multiple subcellular compartments. In male and female rats, 65-75% of total liver BAT activity was found in the cytosol, 15-17% was found in the peroxisomes, and 5-10% was found in the heavy mitochondrial fraction. After clofibrate treatment, male rats displayed an increase in peroxisomal BAT specific activity and a decrease in cytosolic BAT specific activity, whereas females showed an opposite response. However, there was no overall change in BAT specific activity in whole liver homogenate. Treatment with rosiglitazone or cholestyramine had no effect on BAT activity in any subcellular compartment. These experiments indicate that the majority of BAT activity in the rat liver resides in the cytosol. Approximately 15% of BAT activity is present in the peroxisomal matrix. These data support the novel finding that clofibrate treatment does not directly regulate BAT activity but does alter the subcellular localization of BAT.  相似文献   

10.
The subcellular and submitochondrial localization of CTP:phosphatidate cytidylyltransferase is altered in the Morris 7777 hepatoma. Mitochondria in this poorly differentiated tumor are the principal sites of CDP-diacylglycerol synthesis, in contrast to normal rat liver where the endoplasmic reticulum is most active. This enzyme activity was increased 17-fold in the outer mitochondrial membrane, and a 22% increase was noted in the inner mitochondrial membrane of the 7777 hepatoma as compared with the corresponding fractions from normal rat liver. Increased mitochondrial CTP:phosphatidate cytidylyltransferase was present in six other Morris hepatomas, but it was not found in fetal rat liver mitochondria, suggesting that rapid growth alone is not responsible for the difference. Evidence is presented which indicates that mitochondrial lipid degradation is similar in normal liver and the 7777 hepatoma, in vitro. The increased activity of CTP: phosphatidate cytidylytransferase is thought to be responsible in part for the moderately increased diphosphatidylglycerol content of 7777 hepatoma mitochondria.  相似文献   

11.
In order to investigate the mechanisms involved in some brain disorders at the membrane level, we studied the kinetics and biochemical properties of brain CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15), the rate-limiting enzyme of the two-step biosynthesis of phosphatidylcholine. This enzyme catalyzes the biosynthesis of CDPcholine from choline phosphate and CTP. We found that its subcellular localization (mainly in microsomal and cytosolic fractions) was different from that of phosphatidylethanolamine N-methyltransferase (EC 2.1.1.17), the enzyme of the alternative pathway for phosphatidylcholine synthesis. CTP:choline-phosphate cytidylyltransferase showed a Km of 10 mM for CTP and 0.3 mM for choline phosphate and exhibited a random mechanism. CDPcholine, the reaction product, was a competitive inhibitor of choline phosphate and CTP utilization and had a Ki of 0.090 mM. Both particulate and soluble enzymes required Mg2+ and exhibited an optimal pH at about 7. Cytosolic activity was enhanced by addition of unsaturated fatty acids or phospholipids extracted from brain membranes. Such an enhancement was increased with the centrifugation time used for preparing the soluble enzyme.  相似文献   

12.
Biological Trace Element Research - Reported are the subcellular distributions of selenium (Se), gold, glutathione peroxidase, and enzyme markers for nuclei, mitochondria, lysosomes, and soluble...  相似文献   

13.
The choline-deficient rat liver has been chosen as a physiologically relevant model system in which to study the regulation of phosphatidylcholine biosynthesis. When 50-g rats were placed on a choline-deficient diet for 3 days, the activity of CTP:phosphocholine cytidylyltransferase (CT) was increased 2-fold in the microsomes and decreased proportionately in the cytosol. A low titer antibody to CT was obtained from chickens and used to identify the amount of CT protein in cytosol from rat liver. The amount of CT recovered from the choline-deficient cytosol was significantly less than in cytosol from choline-supplemented rats. When hepatocytes were prepared from choline-deficient livers, supplementation of the medium of the cells with choline caused CT to move from the membranes to cytosol within 1-2 h. The activity of another translocatable enzyme of glycerolipid metabolism, phosphatidate phosphohydrolase, was unchanged in cytosol from choline-deficient rat livers, and the microsomal activity of this enzyme was only minimally increased. When the livers were fractionated into endoplasmic reticulum and Golgi, there was a 2-fold increase in the activity on the endoplasmic reticulum from choline-deficient livers but no change in activity associated with Golgi. Thus, the increased association of CT with endoplasmic reticulum in choline-deficient livers appears to be specific to that subcellular fraction, and the subcellular location of other enzymes may not be affected.  相似文献   

14.
CTP : phosphocholine cytidylyltransferase activity exists in both the microsome and cytosol fractions of adult lung, 36 and 59%, respectively. Although these enzyme activities are stimulated in vitro by added lipid activators (i.e. phosphatidylglycerol), there are significant levels of activity in the absence of added lipid. We have removed endogenous lipid material from microsome and cytosol preparations of rat lung by rapid extraction with isopropyl ether. The extraction procedure did not cause any loss of cytidylyltransferase activity in the cytosol. After the extraction the enzyme was almost completely dependent upon added lipid activator. Isopropyl ether extraction of microsome preparations produced a loss of 40% of the cytidylyltransferase activity, when measured in the presence of added phosphatidylglycerol. Lipid material extracted into isopropyl ether restored the cytidylyltransferase activity in cytosol. The predominant species of enzyme activator in the isopropyl ether extracts was fatty acid. A variety of naturally occurring unsaturated fatty acids stimulated the cytidylyltransferase to the same extent as phosphatidylglycerol. Saturated fatty acids were inactive.  相似文献   

15.
16.
Phosphatidylcholine synthesis by rat type II pneumonocytes was altered either by depleting the cells of choline or by exposing the cells to extracellular lung surfactant. Effects of these experimental treatments on the activity of a regulatory enzyme, CTP:phosphocholine cytidylyltransferase, were investigated. Although choline depletion of type II pneumonocytes resulted in inhibition of phosphatidylcholine synthesis, cytidylyltransferase activity (measured in cell homogenates in either the absence or presence of added lipids) was greatly increased. Activation of cytidylyltransferase in choline-depleted cells was rapid and specific, and was quickly and completely reversed when choline-depleted cells were exposed to choline (but not ethanolamine). Choline-dependent changes in enzymic activity were apparently not a result of direct actions of choline on cytidylyltransferase and they were largely unaffected by cyclic AMP analogues, oleic acid, linoleic acid or cycloheximide. The Km value of cytidylyltransferase for CTP (but not phosphocholine) was lower in choline-depleted cells than in choline-repleted cells. Subcellular redistribution of cytidylyltransferase also was associated with activation of the enzyme in choline-depleted cells. When measured in the presence of added lipids, 66.5 +/- 5.0% of recovered cytidylyltransferase activity was particulate in choline-depleted cells but only 34.1 +/- 4.5% was particulate in choline-repleted cells. An increase in particulate cytidylyltransferase also occurred in type II pneumonocytes that were exposed to extracellular surfactant. This latter subcellular redistribution, however, was not accompanied by a change in cytidylyltransferase activity even though incorporation of [3H]choline into phosphatidylcholine was inhibited by approx. 50%. Subcellular redistribution of cytidylyltransferase, therefore, is associated with changes in enzymic activity under some conditions, but can also occur without a resultant alteration in enzymic activity.  相似文献   

17.
The purpose of these studies was to determine the properties of the membrane-bound cytidylyltransferase in adult lung and to assess the relationship between the microsomal enzyme and the two forms of cytidylyltransferase in cytosol. Microsomes, isolated by glycerol density centrifugation, contained significantly less cytidylyltransferase than microsomes isolated by differential centrifugation (11.6 +/- 3.2 vs. 30 +/- 11 nmol/min per g lung). The released activity was recovered as H-form cytidylyltransferase. Cytidylyltransferase activity was not removed from microsomes by washing of the microsomal pellet with homogenizing buffer. Triton X 100 extracted all of the cytidylyltransferase from microsomes. The extracted activity was similar to H-form. Chlorpromazine dissociated microsomal enzyme to L-form. Chlorpromazine has been shown previously to dissociate H-form to L-form. These results suggested that microsomal cytidylyltransferase existed in a form similar if not identical to cytosolic H-form. In vitro translocation experiments demonstrated that the L-form of cytidylyltransferase was the species which binds to microsomal membranes. Triton X 100 extraction of microsomes from translocations experiments removed the bound enzyme activity. Glycerol density fractionation indicated that the activity in the Triton extract was H-form cytidylyltransferase. We concluded that the active lipoprotein form of cytidylyltransferase (H-form) is the membrane-associated form of cytidylyltransferase in adult lung; that it is formed after the L-form binds to microsomal membranes and that cytosolic H-form is released from the membrane.  相似文献   

18.
The enzymes responsible for the biosynthesis of phosphatidylglycerol, CTP:phosphatidate cytidylyltransferase, CDP-diacylglycerol: glycerophosphate phosphatidyltransferase and phosphatidylglycerophosphate phosphatase demonstrated a coordinate increase in activity in fetal rat lung at term when the demand for pulmonary surfactant increases. The activity of CTP:cholinephosphate cytidylyltransferase, the enzyme responsible for CDP-choline production also increased in the perinatal period. The activity of cholinephosphate cytidylyltransferase in fetal and neonatal cytosol was stimulated by the addition of phosphatidylglycerol but no effect was noted with cytosol from adult lung. These results are consistent with the suggestion that the activity of cholinephosphate cytidylyltransferase, a potential rate-determining enzyme in pulmonary phosphatidylcholine synthesis, may be regulated in the perinatal period both through an activation by phosphatidylglycerol and by an increase in total enzyme units.  相似文献   

19.
The activity of the low molecular weight form of cytidylyltransferase from fetal lung cytosol and adult liver cytosol was stimulated more by phosphatidylcholine-oleic acid (1:1 molar ratio) vesicles than by phosphatidylglycerol vesicles. Phosphatidylcholine alone did not stimulate the activity, while oleic acid alone produced only slight stimulation. Vesicles prepared from phosphatidylinositol, phosphatidylglycerol-cholesterol (2:1) and phosphatidylglycerol-phosphatidylcholine (1:1) all stimulated the activity to the same extent. Phosphatidylcholine-oleic acid vesicles (molar ratio 2:1) produced less stimulation than 1:1 vesicles. Phosphatidylcholine-palmitic acid vesicles (2:1) were about 50% as active as the corresponding phosphatidylcholine-oleic acid vesicles. All vesicles were in the size range of small unilamellar vesicles as judged by Sephacryl S-1000 chromatography. Stimulation also occurred when phosphatidylcholine vesicles and oleic acid were added separately to the assay. The stimulation by phospholipid vesicles was correlated with the ability of the vesicles to bind cytidylyltransferase, determined by sucrose density centrifugation of the enzyme-vesicles mixtures. We conclude that the stimulation of soluble cytidylyltransferase occurs through binding of the enzyme to anionic membrane surfaces. Suitable anionic membranes can be prepared either from anionic phospholipids, or by the addition of anionic lipids (unesterified fatty acids or phosphatidylglycerol) to phosphatidylcholine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号