共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of the binding constants of the centromere protein Cbf1 to all 16 centromere DNAs of Saccharomyces cerevisiae 总被引:1,自引:0,他引:1 下载免费PDF全文
Wieland G Hemmerich P Koch M Stoyan T Hegemann J Diekmann S 《Nucleic acids research》2001,29(5):1054-1060
Cbf1p is a Saccharomyces cerevisiae chromatin protein belonging to the basic region helix–loop–helix leucine zipper (bHLHzip) family of DNA binding proteins. Cbf1p binds to a conserved element in the 5′-flanking region of methionine biosynthetic genes and to centromere DNA element I (CDEI) of S.cerevisiae centromeric DNA. We have determined the apparent equilibrium dissociation constants of Cbf1p binding to all 16 CDEI DNAs in gel retardation assays. Binding constants of full-length Cbf1p vary between 1.7 and 3.8 nM. However, the dissociation constants of a Cbf1p deletion variant that has been shown to be fully sufficient for Cbf1p function in vivo vary in a range between 3.2 and 12 nM. In addition, native polyacrylamide gel electrophoresis revealed distinct changes in the 3D structure of the Cbf1p/CEN complexes. We also show that the previously reported DNA binding stimulation activity of the centromere protein p64 functions on both the Cbf1 full-length protein and a deletion variant containing only the bHLHzip domain of Cbf1p. Our results suggest that centromeric DNA outside the consensus CDEI sequence and interaction of Cbf1p with adjacent centromere proteins contribute to the complex formation between Cbf1p and CEN DNA. 相似文献
2.
《The Journal of cell biology》1995,128(5):749-760
We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994). 相似文献
3.
In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPF1. 总被引:10,自引:1,他引:10 下载免费PDF全文
The centromere DNA element I (CDEI) is an important component of Saccharomyces cerevisiae centromere DNA and carries the palindromic sequence CACRTG (R = purine) as a characteristic feature. In vivo, CDEI is bound by the helix-loop-helix protein CPF1. This article describes the in vivo analysis of all single-base-pair substitutions in CDEI in the centromere of an artificial chromosome and demonstrates the importance of the palindromic sequence for faithful chromosome segregation, supporting the notion that CPF1 binds as a dimer to this binding site. Mutational analysis of two conserved base pairs on the left and two nonconserved base pairs on the right of the CDEI palindrome revealed that these are also relevant for mitotic CEN function. Symmetrical mutations in either half-site of the palindrome affect centromere activity to a different extent, indicating nonidentical sequence requirements for binding by the CPF1 homodimer. Analysis of double point mutations in CDEI and in CDEIII, an additional centromere element, indicate synergistic effects between the DNA-protein complexes at these sites. 相似文献
4.
5.
Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. 总被引:24,自引:19,他引:24 下载免费PDF全文
J H Hegemann J H Shero G Cottarel P Philippsen P Hieter 《Molecular and cellular biology》1988,8(6):2523-2535
Saccharomyces cerevisiae centromeres have a characteristic 120-base-pair region consisting of three distinct centromere DNA sequence elements (CDEI, CDEII, and CDEIII). We have generated a series of 26 CEN mutations in vitro (including 22 point mutations, 3 insertions, and 1 deletion) and tested their effects on mitotic chromosome segregation by using a new vector system. The yeast transformation vector pYCF5 was constructed to introduce wild-type and mutant CEN DNAs onto large, linear chromosome fragments which are mitotically stable and nonessential. Six point mutations in CDEI show increased rates of chromosome loss events per cell division of 2- to 10-fold. Twenty mutations in CDEIII exhibit chromosome loss rates that vary from wild type (10(-4)) to nonfunctional (greater than 10(-1)). These results directly identify nucleotides within CDEI and CDEIII that are required for the specification of a functional centromere and show that the degree of conservation of an individual base does not necessarily reflect its importance in mitotic CEN function. 相似文献
6.
All 16 centromere DNA regions of Saccharomyces cerevisiae including 90 bp framing sequences on either side were cloned. These 300 bp long centromere regions were analysed by native polyacrylamide gel electrophoresis and found to display a reduced mobility indicative of DNA curvature. The degree of curvature is centromere dependent. The experimental data were confirmed by computer analysis of the 3-dimensional structure of the CEN DNAs. Altogether these data provide further evidence for a model for budding yeast centromeres in which CEN DNA structure could be important for the assembly, activity and/or regulation of the centromere protein-DNA complex. 相似文献
7.
Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. 总被引:14,自引:16,他引:14 下载免费PDF全文
Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo. 相似文献
8.
A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype. 相似文献
9.
An essential Saccharomyces cerevisiae single-stranded DNA binding protein is homologous to the large subunit of human RP-A. 总被引:27,自引:5,他引:27 下载免费PDF全文
Single-stranded DNA binding proteins (SSBs) are known to play a role in DNA replication and recombination in prokaryotes. An SSB was previously purified from the yeast Saccharomyces cerevisiae. This SSB stimulated the activity of a cognate strand exchange protein (SEP1) in vitro suggesting a role in recombination. We have cloned and functionally analyzed the gene encoding this protein. DNA sequencing of the cloned DNA revealed a 621 amino acid open reading frame with a coding potential for a Mr 70,269 polypeptide. Highly significant amino acid homology was detected between this S.cerevisiae gene and the Mr 70,000 subunit polypeptide of human RP-A, a cellular protein essential for SV40 DNA replication in vitro. Therefore, we named the S.cerevisiae gene RPA1. RPA1 encodes an essential function in this organism as shown by tetrad analysis of heterozygous insertion mutants and is continuously required for mitotic growth. Cells lacking RPA1 accumulate as multiply budded cells with a single nucleus suggesting a defect in DNA replication. 相似文献
10.
Saccharomyces cerevisiae mitochondrial mRNAs terminate at their 3' ends with a conserved dodecamer sequence, 5'-AAUAA(U/C)AUUCUU-3'. We have identified a nuclear-encoded protein (DBP) which specifically binds to the dodecamer sequence and have purified it to apparent homogeneity by RNA affinity chromatography. DBP consists of a single polypeptide of 55 kDa and binds to its RNA substrate with a 1:1 stoichiometry. Scatchard analysis determines that K(d) is 0.93 nM for the canonical dodecamer sequence (5'-AAUAAUAUUCUU-3') and 0.46 nM for the only naturally occurring variant (5'-AAUAACAUUCUU-3') unique to oli1 gene. Based on the studies using mutant oligonucleotides, DBP appears to recognize primarily the nucleotide sequence of an RNA rather than its potential secondary structure. 相似文献
11.
Gupta S Cheng H Mollah AK Jamison E Morris S Chance MR Khrapunov S Brenowitz M 《Biochemistry》2007,46(35):9886-9898
Recombinant full-length Saccharomyces cerevisiae TATA binding protein (TBP) and its isolated C-terminal conserved core domain (TBPc) were prepared with measured high specific DNA-binding activities. Direct, quantitative comparison of TATA box binding by TBP and TBPc reveals greater affinity by TBPc for either of two high-affinity sequences at several different experimental conditions. TBPc associates more rapidly than TBP to TATA box bearing DNA and dissociates more slowly. The structural origins of the thermodynamic and kinetic effects of the N-terminal domain on DNA binding by TBP were explored in comparative studies of TBPc and TBP by "protein footprinting" with hydroxyl radical (*OH) side chain oxidation. Some residues within TBPc and the C-terminal domain of TBP are comparably protected by DNA, consistent with solvent accessibility changes calculated from core domain crystal structures. In contrast, the reactivity of some residues located on the top surface and the DNA-binding saddle of the C-terminal domain differs between TBP and TBPc in both the presence and absence of bound DNA; these results are not predicted from the crystal structures. A strikingly different pattern of side chain oxidation is observed for TBP when a nonionic detergent is present. Taken together, these results are consistent with the N-terminal domain actively modulating TATA box binding by TBP and nonionic detergent modulating the interdomain interaction. 相似文献
12.
13.
Yp20 is an abundant 20 kDa chromatin associated protein which has been shown to be related antigenically to genuine Hras products. Using Southwestern blots we have demonstrated that Yp20 is a DNA binding protein. It is also shown that protein Yp20 like protein HM (an abundant thermostable 20 kDa DNA binding protein isolated from mitochondria) and like the 21 kDa autonomously replicating sequence binding factor II (ABFII) is able to introduce superhelical turns into circular relaxed DNA in the presence of DNA topoisomerase I activity. We suggest that this protein may be important for chromatin structure and function. 相似文献
14.
We constructed Saccharomyces cerevisiae centromere DNA mutants by annealing and ligating synthetic oligonucleotides, a novel approach to centromere DNA mutagenesis that allowed us to change only one structural parameter at a time. Using this method, we confirmed that CDE I, II, and III alone are sufficient for centromere function and that A+T-rich sequences in CDE II play important roles in mitosis and meiosis. Analysis of mutants also showed that a bend in the centromere DNA could be important for proper mitotic and meiotic chromosome segregation. In addition we demonstrated that the wild-type orientation of the CDE III sequence, but not the CDE I sequence, is critical for wild-type mitotic segregation. Surprisingly, we found that one mutant centromere affected the segregation of plasmids and chromosomes differently. The implications of these results for centromere function and chromosome structure are discussed.by M. Yanagida 相似文献
15.
16.
Genetic and genomic analysis of the AT-rich centromere DNA element II of Saccharomyces cerevisiae 下载免费PDF全文
Centromere DNA element II (CDEII) of budding yeast centromeres is an AT-rich sequence essential for centromere (CEN) function. Sequence analysis of Saccharomyces cerevisiae CDEIIs revealed that A(5-7)/T(5-7) tracts are statistically overrepresented at the expense of AA/TT and alternating AT. To test the hypothesis that this nonrandom sequence organization is functionally important, a CEN library in which the CDEII sequences were randomized was generated. The library was screened for functional and nonfunctional members following centromere replacement in vivo. Functional CENs contained CDEIIs with the highly biased A(n)/T(n) run distribution of native centromeres, while nonfunctional CDEIIs resembled those picked from the library at random. Run content, defined as the fraction of residues present in runs of four or more nucleotides, of the functional and nonfunctional CDEII populations differed significantly (P < 0.001). Computer searches of the genome for regions with an A + T content comparable to CDEIIs revealed that such loci are not unique to centromeres, but for 14 of the 16 chromosomes the AT-rich locus with the highest A(n > or =4) + T(n > or =4) run content was the centromere. Thus, the distinctive and nonrandom sequence organization of CDEII is important for centromere function and possesses informational content that could contribute to the determination of centromere identity. 相似文献
17.
The DAT1 gene of Saccharomyces cerevisiae encodes a DNA binding protein (Dat1p) that specifically recognizes the minor groove of non-alternating oligo(A).oligo(T) tracts. Sequence-specific recognition requires arginine residues found within three perfectly repeated pentads (G-R-K-P-G) of the Dat1p DNA binding domain [Reardon, B. J., Winters, R. S., Gordon, D., and Winter, E. (1993) Proc. Natl. Acad. Sci. USA 90, 11327-1131]. This report describes a rapid and simple method for purifying the Dat1p DNA binding domain and the biochemical characterization of its interaction with oligo(A).oligo(T) tracts. Oligonucleotide binding experiments and the characterization of yeast genomic Dat1p binding sites show that Dat1p specifically binds to any 11 base sequence in which 10 bases conform to an oligo(A).oligo(T) tract. Binding studies of different sized Dat1p derivatives show that the Dat1p DNA binding domain can function as a monomer. Competition DNA binding assays using poly(I).poly(C), demonstrate that the minor groove oligo(A).oligo(T) constituents are not sufficient for high specificity DNA binding. These data constrain the possible models for Dat1p/oligo(A).oligo(T) complexes, suggest that the DNA binding domain is in an extended structure when complexed to its cognate DNA, and show that Dat1p binding sites are more prevalent than previously thought. 相似文献
18.
DNA polymerase III from Saccharomyces cerevisiae. I. Purification and characterization 总被引:24,自引:0,他引:24
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction. 相似文献
19.
Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site 总被引:35,自引:0,他引:35
R E Baker M Fitzgerald-Hayes T C O'Brien 《The Journal of biological chemistry》1989,264(18):10843-10850
CP1 is a yeast protein which binds to the highly conserved DNA element I (CDEI) of yeast centromeres. We have purified CP1 to near homogeneity; it is comprised of a single polypeptide of molecular weight 58,400. When bound to yeast CEN3 DNA, CP1 protects a 12-15-base pair region centered over CDEI. Methylation interference experiments show that methylations of residues located outside of the 8-base pair CDEI sequence have no detectable effect on CP1 binding, suggesting that the DNA sequences important for CP1 recognition are confined to the CDEI octanucleotide. The equilibrium constant for CP1 binding to CEN3 DNA is relatively low, 3 x 10(8) M-1. Using a novel method to determine relative DNA binding constants, we analyzed the effect of CDEI mutations on CP1 binding. A C to T point mutation at position 5 (CO1) reduces the equilibrium constant about 35-fold, while the insertion of an additional T at this position (CAT) reduces the equilibrium constant 1,400-fold. The effect of these mutations on mitotic centromere function in vivo was assessed using a plasmid stability assay. While the CO1 mutation had a slight effect, the CAT mutation significantly impaired function, implying that CP1 binding is required for the optimal mitotic function of yeast centromeres. 相似文献
20.
Purification of DNA polymerase II, a distinct DNA polymerase, from Saccharomyces cerevisiae 总被引:6,自引:0,他引:6
Yeast DNA polymerases I and III have been well characterized physically, biochemically, genetically and immunologically. DNA polymerase II is present in very small amounts, and only partially purified preparations have been available for characterization, making comparison with DNA polymerases I and III difficult. Recently, we have shown that DNA polymerases II and III are genetically distinct (Sitney et al., 1989). In this work, we show that polymerase II is also genetically distinct from polymerase I, since polymerase II can be purified in equal amounts from wild-type and mutant strains completely lacking DNA polymerase I activity. Thus, yeast contains three major nuclear DNA polymerases. The core catalytic subunit of DNA polymerase II was purified to near homogeneity using a reconstitution assay. Two factors that stimulate the core polymerase were identified and used to monitor activity during purification and analysis. The predominant species of the most highly purified preparation of polymerase II is 132,000 Da. However, polymerase activity gels suggest that the 132,000-Da form of DNA polymerase II is probably an active proteolytic fragment derived from a 170,000-Da protein. The highly purified polymerase fractions contain a 3'----5'-exonuclease activity that purifies at a constant ratio with polymerase during the final two purification steps. However, DNA polymerase II does not copurify with a DNA primase activity. 相似文献