首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure is described for isolating photosynthetically active rhodoplasts (“red algal chloroplasts”) from the marine alga Griffithsia monilis. The rhodoplasts exhibited rates of CO2 fixation and CO2-dependent O2 evolution in the order of 200 micromoles per milligram chlorophyll a per hour when illuminated with red or green light and were approximately 80% intact. The response of the rate of photosynthesis to the inorganic phosphate and pyrophosphate concentrations in the medium was qualitatively similar to that previously reported for spinach chloroplasts. Osmotically shocked rhodoplasts evolved O2 from ferricyanide in red, but not in green, light and were completely uncoupled. Rhodoplast envelope rupture appeared to be accompanied by phycobilisome loss from the thylakoids.  相似文献   

2.
Ethylene and CO2 were used to control induction of germination in thermodormant lettuce seed (Lactuca sativa L.). These experiments ultimately showed that germination depends on the presence of an active form of the phytochrome. The phytochrome system is functional and stable at 35 C, a temperature which completely inhibits germination. Phytochrome responses to red or far red light and darkness showed that this inhibition of germination under light must be due to some other block(s) rather than to a direct inactivation of the phytochrome system itself. A postred radiation increase in lettuce seed germination that is not reversed by far red light was observed. The CO2 requirement for C2H4 action is not due to a change in the medium's pH; addition of C2H4 plus CO2 at the start of imbibition did not result in as much germination as when they were added several hours after imbibition. This reduction in germination, when the gases are added at the start of imbibiton, is due to CO2.  相似文献   

3.
With an experimental system using mass spectrometry techniques and infra-red gas analysis of CO2 developed for aquatic plants, we studied the responses to various light intensities and CO2 concentrations of photosynthesis and O2 uptake of the red macroalga Chondrus crispus S. The CO2 exchange resistance at air-water interface which could limit the photosynthesis was experimentally measured. It allowed the calculation of the free dissolved CO2 concentration. The response to light showed a small O2 uptake (37% of net photosynthesis in standard conditions) compared to C3 plants; it was always higher than dark respiration and probably included a photoindependent part. The response to CO2 showed: (a) an O2 uptake relatively insensitive to CO2 concentration and not completely inhibited with high CO2, (b) a general inhibition of gas exchanges below 130 microliters CO2 per liter (gas phase), (c) an absence of an inverse relationship between O2 and CO2 uptakes, and (d) a low apparent Km of photosynthesis for free CO2 (1 micromolar). These results suggest that O2 uptake in the light is the sum of different oxidation processes such as the glycolate pathway, the Mehler reaction, and mitochondrial respiration. The high affinity for CO2 is discussed in relation to the use of HCO3 and/or the internal CO2 accumulation.  相似文献   

4.
Blue light was shown to regulate the utilization of oxidized nitrogen sources by green algae, both by activating nitrate reductase and promoting nitrite reductase biosysnthesis (MA Quiñones, PJ Aparicio [1990] Inorganic Nitrogen in Plants and Microorganisms, Springer-Verlag, Berlin, pp 171-177; MA Quiñones, PJ Aparicio [1990] Photochem Photobiol 51: 681-692). The data reported herein show that, when cells of Monoraphidium braunii at pH 8, containing both active nitrate reductase and nitrite reductase, were sparged with CO2-free air and irradiated with strong background red light, they took up oxidized nitrogen sources only when PAR comprised blue light. The activation of the transport system(s) of either both nitrate and nitrite was very quick and elicited by low irradiance blue light. In fact, blue light appears to act as a switch signal from the environment, since the uptake of these anions immediately ceased when this radiation was turned off. The requirement of blue light for nitrate uptake was independent of the availability of CO2 to cells. However, cells under high CO2 tensions, although they showed an absolute blue light requirement to initially establish the uptake of nitrite, as they gained carbon skeletons to allocate ammonia, gradually increased their nitrite uptake rates in the subsequent red light intervals. Under CO2-free atmosphere, cells irradiated with strong background red light of 660 nanometers only evolved oxygen when they were additionally irradiated with low irradiance blue light and either nitrate or nitrite was present in the media to provide electron acceptors for the photosynthetic reaction.  相似文献   

5.
The effects of environmental parameters on the blue light response of stomata were studied by quantifying transient increases in stomatal conductance in Commelina communis following 15 seconds by 0.100 millimole per square meter per second pulses of blue light. Because conductance increases were not observed following red light pulses of the same or greater (30 seconds by 0.200 millimole per square meter per second) fluences, the responses observed could be reliably attributed to the specific blue light response of the guard cells, rather than to guard cell chlorophyll. In both Paphiopedilum harrisianum, which lacks guard cell chloroplasts, and Commelina, the blue light response was enhanced by 0.263 millimole per square meter per second continuous background red light. Thus, the blue light response and its enhancement do not require energy derived from red-light-driven photophosphorylation by the guard cell chloroplasts. In Commelina, reduction of the intercellular concentration of CO2 by manipulation of ambient CO2 concentrations resulted in an enhanced blue light response. In both Commelina and Paphiopedilum, the blue light response was decreased by an increased vapor pressure difference. The magnitude of blue-light-specific stomatal opening thus appears to be sensitive to environmental conditions that affect the carbon and water status of the plant.  相似文献   

6.
Regulation of Transpiration in Avena. Responses to Red and Blue Light Steps   总被引:3,自引:0,他引:3  
The transpiration responses of primary Arena leaves to red and blue light steps were investigated. The response to a red light step was a so-called slow response (with a rise time of about 8 min). The response to a blue light step consisted of both a slow, and a rapid response (with a rise time of about 2 min). CO2-free air outside the leaf eliminated only the slow response, i.e. in CO2-free ait the plant responded to blue light steps but not to red ones. A short exposure of red light prior to a blue light step enhanced the rapid response. The same enhancement of the rapid response could be achieved by means of a temporary pretreatment with CO2-free air. The magnitude of the rapid response was dependent on the blue light irradiance and no threshold effects could be detected. — The experimental results are discussed by means of a model, based on stomatal regulation by, ion transport between the subsidiary cells and the guard cells. It is suggested that the slow transpiration response is due to CO2-regulation of the stomatal aperture and that the rapid response reflect a CO2-independent blue light sensitive process, which acts directly on the ion transport through the subsidiary and guard cell membranes.  相似文献   

7.
Effects of red (RL) and blue (BL) light on acclimation of the unicellular green alga Chlamydomonas reinhardtii to the low level of ambient CO2 were studied. C. reinhardtii cells grown at 5% CO2 and under white light (170 μmol/(m2s)) had a relatively low activity of extracellular carbonic anhydrase (CA), a low affinity for dissolved inorganic carbon, and a low rate of photosynthesis under CO2-limiting conditions. These cells readily started acclimation to the low CO2 concentration when they were exposed to atmospheric air (~ 0.03% CO2) under RL or BL (150 μmol/(m2 s) each). The acclimation was manifested in a significant increase in the CO2-limited rate of photosynthesis, the affinity for dissolved inorganic carbon, and the extracellular CA activity with no difference between RL-and BL-cells. Independently of light quality, the acclimation was completed for 5–7 h after cell exposure to air. As is evident from RL-and BL-dependent changes in the sum of chlorophylls and chlorophyll a/b ratio, transfer of C. reinhardtii cells to air and RL or BL triggered also the process of algal photosynthetic adaptation to light quality. However, this process did not interfere with acclimation to low CO2 because started 4 h later. On the basis of similarity in the low CO2-induced changes under RL and BL, it is concluded that acclimation of C. reinhardtii to CO2-limiting conditions does not depend on light quality.  相似文献   

8.
The effect of storage of the unicellular green alga Chlamydomonas reinhardtii (strain 137+) in the pelleted state in darkness on ice (0.2–0.5°C) (further simply “SPDI-treatment”) on its photosynthetic and respiratory activities was studied. To this end, the steady-state rates of O2 exchange in darkness (dark respiration) and under saturating light (apparent photosynthesis) as well as the induction periods (IP) of apparent photosynthesis were measured at 25°C in the SPDI-untreated and SPDI-treated for the period from ~0.5 to ~30 h algal cells. In contrast to expectations, the SPDI-treatment consistently affected the rate and IP of photosynthesis depending on the physiological state of C. reinhardtii. Dark respiration was affected by the SPDI-treatment as well. However, in absolute values the respiratory changes were much less than the photosynthetic ones, and they were insufficiently reproducible. The SPDI-treatment affected photosynthesis most significantly in high-CO2-grown cells (cells grown at 5% CO2 in white light). The rate of photosynthesis in these cells declined quasi-exponentially as a function of time during the SPDI-treatment with a t 1/2 ~1.5 h and finally became by about 60% lower than that before the SPDI-treatment. This decline of photosynthesis was accompanied by continuous and essential increase in the photosynthetic IP. The SPDI-induced photosynthetic changes in high-CO2-grown cells resulted from the firm disfunction of the photosynthetic apparatus. After switch from growth at 5% CO2 in white light to growth at ~0.03% CO2 (air) in white, blue, or red light, the alga gradually transited to a physiological state, in which the negative effects of the SPDI-treatment on the rate and IP of photosynthesis became weak and absent, respectively. Remarkably, this transition was faster in blue (≤5 h) than in white and red light (>10 h). Similar changes in the response of the alga to the SPDI-treatment occurred when high-CO2-grown cells (5% CO2, white light, 26°C) were incubated in darkness (air, 24–26°C) for 20–25 h. The results of study were analyzed in the light of literature data relating to the effects of CO2 concentration, darkness, and light quality on carbohydrates in plant organisms. The analysis led to suggestion that there is connection between the negative effect of the SPDI-treatment on C. reinhardtii and nonstructural carbohydrates presented in the alga: the more carbohydrates contain the alga, the more extensive inactivation of the photosynthetic apparatus occurs in it during its storage in the dense (pelleted) state in darkness on ice.  相似文献   

9.
A chlorophyll deficient mutant of Hordeum vulgare L. was investigated with respect to its transpiration response to light pulses. Broad band blue light. 380–500 nm, caused a significant transpiration response, while broad band red light did not. The transpiration response to changes in the ambient CO2-concentration was the same in the chlorophyll deficient mutant as in green plants. The absence of a transpiration response to red light in the mutant was therefore not the result of a defective CO2-response. It is concluded that the specific blue light response is not mediated via photosynthetic CO2-fixation. The nature of the blue light response is discussed.  相似文献   

10.
The heterocystous blue-green alga, Anabaena azollae, was isolated from the leaf cavities of the water fern, Azolla caroliniana, where it occurs as an endophyte. The isolated alga was capable of light dependent CO2 fixation and acetylene reduction. Aerobic dark acetylene reduction occurred and was dependent upon endogenous substrates. Vegetative cells of the alga reduced nitro-blue tetrazolium chloride (NBT) to blue formazan. Heterocysts did not. Heterocysts reduced triphenyl tetrazolium chloride (TTC) to red formazan faster than vegetative cells. Reduction of TTC by both heterocysts and vegetative cells was much more rapid than has been reported for free-living heterocystous blue-green algae. Both NBT and TTC inhibited acetylene reduction and CO2 fixation. The inhibition by TTC was more closely correlated to the time of exposure of the cells to the reagent and to the amount of deposition per cell than to the number of cells containing red formazan. No differential inhibition of acetylene reduction versus CO2 fixation was observed. Autoradiography showed that CO2 fixation occurred only in vegetative cells. Heterocysts caused a darkening of nuclear emulsions (chemography). This observation has been employed by others as an index of reducing activity in these cells. DCMU inhibited the acetylene reducing capacity of alga isolated from dark pretreated fronds more rapidly and to a greater extent than that in alga isolated from light pretreated fronds. Ammonia in excess of 5 mM was required before any inhibition of acetylene reduction was observed under either aerobic or anaerobic conditions in the light.  相似文献   

11.
Leafy thalli of the red algaPorphyra yezoensis Ueda, initiated from conchospores released from free-living conchocelis, were cultured using aeration with high CO2. It was found that the higher the CO2 concentration, the faster the growth of the thalli. Aeration with elevated CO2 lowered pH in dark, but raised pH remarkably in light with the thalli, because the photosynthetic conversion of HCO 3 ? to OH? and CO2 proceeded much faster than the dissociation of hydrated CO2 releasing H+. Photosynthesis of the alga was found to be enhanced in the seawater of elevated dissolved inorganic carbon (DIC, CO2 + HCO 3 ? + CO 3 ? ). It is concluded that the increased pH in the light resulted in the increase of DIC in the culture media, thus enhancing photosynthesis and growth. The relevance of the results to removal of atmospheric CO2 by marine algae is discussed.  相似文献   

12.
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0 chlorophyll fluorescence levels - exc quantum efficiency of excitation energy capture by open Photosystem II - PS II quantum efficiency of electron flow through Photosystem II - P515 field indicating rapid absorbance change peaking at 522 nm - P700 primary donor of Photosystem I - QA primary quinone acceptor in Photosystem II - QN non-photochemical fluorescence quenching - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

13.
In saturating irradiances of red light, photosynthesis of Laminaria saccharina (L.) Lamouroux was stimulated by low irradiances of continuous blue light only when the supply of dissolved inorganic carbon (DIC) was limiting. The degree of this stimulation was inversely proportional to the logarithm of the concentration of free CO2, whether this was adjusted by varying the total DIC or the pH at a given DIC concentration. The final pH reached in a closed system was higher in blue light than in red light. Both acetazolamide and ethoxyzolamide suppressed the responses to blue light almost completely, but reduced photosynthesis in red light by only 30%. Buffering the pH of the seawater also suppressed the stimulation of photosynthesis by blue light without affecting the photosynthetic rate in red light. The transient stimulation of O2 evolution by a blue light pulse was not accompanied by a corresponding increase in CO2 consumption. These observations could be explained if, in analogy to the mechanism proposed for Ectocarpus (Schmid, Mills & Dring 1996, Plant Cell and Environment 19,373–382, this issue, accompanying paper), photosynthesis was supported by a blue-light-activated release of CO2 from an internal store. We suggest that the store is located in the vacuoles of the cortical tissue of the blades. The main photosynthetic tissue, however, is in the overlying meristoderm, and blue-light-activated mobilization of the store could stimulate O2 evolution only if periplasmic carbonic anhydrase was available to facilitate CO2 uptake from the cortex.  相似文献   

14.
Keeley JE  Bowes G 《Plant physiology》1982,70(5):1455-1458
The submerged aquatic plant Isoetes howellii Engelmann possesses Crassulacean acid metabolism (CAM) comparable to that known from terrestrial CAM plants. Infrared gas analysis of submerged leaves showed Isoetes was capable of net CO2 uptake in both light and dark. CO2 uptake rates were a function of CO2 levels in the medium. At 2,500 microliters CO2 per liter (gas phase, equivalent to 1.79 milligrams per liter aqueous phase), Isoetes leaves showed continuous uptake in both the light and dark. At this CO2 level, photosynthetic rates were light saturated at about 10% full sunlight and were about 3-fold greater than dark CO2 uptake rates. In the dark, CO2 uptake rates were also a function of length of time in the night period. Measurements of dark CO2 uptake showed that, at both 2,500 and 500 microliters CO2 per liter, rates declined during the night period. At the higher CO2 level, dark CO2 uptake rates at 0600 h were 75% less than at 1800 h. At 500 microliters CO2 per liter, net CO2 uptake in the dark at 1800 h was replaced by net CO2 evolution in the dark at 0600 h. At both CO2 levels, the overnight decline in net CO2 uptake was marked by periodic bursts of accelerated CO2 uptake. CO2 uptake in the light was similar at 1% and 21% O2, and this held for leaves intact as well as leaves split longitudinally. Estimating the contribution of light versus dark CO2 uptake to the total carbon gain is complicated by the diurnal flux in CO2 availability under field conditions.  相似文献   

15.
Carbon dioxide discharge and the number of spermatophores transferred were recorded from populations of adult cabbage loopers, Trichoplusia ni, maintained under various wavelengths and intensities of light. Nocturnal CO2 output was enhanced by retaining 1 per cent of the diurnal intensity of near-u.v. and blue lights during the scotophase. However, addition of < 10 per cent of the diurnal intensities of u.v., blue, and white lights suppressed CO2 production. Exposure to gold light resulted in the lowest 24 hr CO2 accumulations, and red was intermediate. Similarly, maximum levels of mating occurred when cabbage loopers were exposed to nocturnal intensities of 1 per cent of the diurnal u.v., blue, or white lights, even though higher intensities were inhibitory. Considering all nocturnal intensities ranging from 0 to 100 per cent of diurnal levels, u.v. and red yielded the highest mating frequencies, blue and gold were intermediate, and white was lowest. Thus, relatively unique action spectra resulted from each régime.  相似文献   

16.
The nature of the different processes of O2 uptake involved in the light in the red macroalga Chondrus crispus Stackhouse (Rhodophyta, Gigartinales) was investigated. At limiting CO2, INH (2.5 mM) did not alter the O2 uptake rate. Glycolate was not excreted and did not accumulate within the cells. KCN reduced the rate of O2 uptake in the light by 76% at limiting CO2 and by 43% at saturating CO2, but caused > 95% inhibition of O2 evolution. DCMU (5 μM) totally blocked the photosynthetic electron transport chain, but allowed a residual O2 uptake of 3.0±0.6 μmol O2 .h?1.g?1 FW, irrespective of the CO2 concentration. In saturating CO2, a high light intensity pretreatment significantly stimulated the rate of O2 uptake compared to net O2 evolution, suggesting the persistence, in the light, of mitochondrial respiration. Irrespective of the CO2 concentration, the optimum temperature for O2 evolution was 17°C whereas dark O2 uptake increased linearly with temperature. In contrast, O2 uptake in the light showed an optimum at 17°C in limiting CO2, and 21–25° C in saturating CO2; its Q10 was 2.4 at limiting CO2, a value close to that of RuBP oxygenase, and 3.1 at saturating CO2, a value close to that of dark respiration. It is concluded that: 1) mitochondrial respiration and Mehler reaction are both involved at all CO2 concentrations, 2) RuBP oxygenase activity cannot account for more than 45%, and Mehler reaction for less than 20%, of the total O2 uptake observed in the light at limiting CO2.  相似文献   

17.
Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol−1) and elevated (784 µmol mol−1) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.  相似文献   

18.
Winter K 《Plant physiology》1980,66(5):917-921
Net CO2 and water vapor exchange were studied in the Crassulacean acid metabolism plant Kalanchoë pinnáta during a normal 12-hour light/12-hour dark cycle and during a prolonged light period. Leaf temperature and leaf-air vapor pressure difference were kept constant at 20 C and 9 to 10 millibar. There was a 25% increase in the rate of CO2 fixation during the first 6 hours prolonged light without change in stomatal conductance. This was associated with a decrease in the intracellular partial pressure of CO2, a decrease in the stimulation of net CO2 uptake by 2% O2, and a decrease in the CO2 compensation point from 45 to 0 microbar. In the normal light period after deacidification, leaves showed a normal light dependence of CO2 uptake but, in prolonged light, CO2 uptake was scarcely light-dependent. The increase in titratable acidity in prolonged light was similar to that in the dark.  相似文献   

19.
Shaded leaves in plant canopies receive a higher proportion of far red relative to red light than is received by unshaded leaves. Brief end-of-day irradiations with red or far red light, acting through the phytochrome system, reversibly control morphological development of tobacco plants. Leaves that received far red light for 5 minutes at the end of each day during development were longer and narrower than those that received end-of-day red light. The far red treated leaves weighed less, had fewer stomata, and had less chlorophyll per unit area of leaf. Net CO2 assimilation rates did not differ significantly between red- and far red-treated leaves on an area basis; however, the far red-treated leaves assimilated significantly more CO2 on a leaf weight basis.  相似文献   

20.
Oxygen exchange in leaves in the light   总被引:30,自引:20,他引:10       下载免费PDF全文
Photosynthetic O2 production and photorespiratory O2 uptake were measured using isotopic techniques, in the C3 species Hirschfeldia incana Lowe., Helianthus annuus L., and Phaseolus vulgaris L. At high CO2 and normal O2, O2 production increased linearly with light intensity. At low O2 or low CO2, O2 production was suppressed, indicating that increased concentrations of both O2 and CO2 can stimulate O2 production. At the CO2 compensation point, O2 uptake equaled O2 production over a wide range of O2 concentrations. O2 uptake increased with light intensity and O2 concentration. At low light intensities, O2 uptake was suppressed by increased CO2 concentrations so that O2 uptake at 1,000 microliters per liter CO2 was 28 to 35% of the uptake at the CO2 compensation point. At high light intensities, O2 uptake was stimulated by low concentrations of CO2 and suppressed by higher concentrations of CO2. O2 uptake at high light intensity and 1000 microliters per liter CO2 was 75% or more of the rate of O2 uptake at the compensation point. The response of O2 uptake to light intensity extrapolated to zero in darkness, suggesting that O2 uptake via dark respiration may be suppressed in the light. The response of O2 uptake to O2 concentration saturated at about 30% O2 in high light and at a lower O2 concentration in low light. O2 uptake was also observed with the C4 plant Amaranthus edulis; the rate of uptake at the CO2 compensation point was 20% of that observed at the same light intensity with the C3 species, and this rate was not influenced by the CO2 concentration. The results are discussed and interpreted in terms of the ribulose-1,5-bisphosphate oxygenase reaction, the associated metabolism of the photorespiratory pathway, and direct photosynthetic reduction of O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号