首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand-induced activation of surface receptors, including the epidermal growth factor receptor (EGFR), is followed by a desensitization process involving endocytosis and receptor degradation. c-Cbl, a tyrosine phosphorylation substrate shared by several signaling pathways, accelerates desensitization by recruiting EGFR and increasing receptor polyubiquitination. Here we demonstrate that the RING type zinc finger of c-Cbl is essential for ubiquitination and subsequent desensitization of EGFR. Mutagenesis of a single cysteine residue impaired the ability of c-Cbl to enhance both down-regulation and ubiquitination of EGFR in living cells, although the mutant retained binding to the activated receptor. Consequently, the mutant form of c-Cbl acquired a dominant inhibitory function and lost the ability to inhibit signaling downstream to EGFR. In vitro reconstitution of EGFR ubiquitination implies that the RING finger plays an essential direct role in ubiquitin ligation. Our results attribute to the RING finger of c-Cbl a causative role in endocytic sorting of EGFR and desensitization of signal transduction.  相似文献   

2.
Ligand-induced desensitization of the epidermal growth factor receptor (EGFR) is controlled by c-Cbl, a ubiquitin ligase that binds multiple signaling proteins, including the Grb2 adaptor. Consistent with a negative role for c-Cbl, here we report that defective Tyr1045 of EGFR, an inducible c-Cbl docking site, enhances the mitogenic response to EGF. Signaling potentiation is due to accelerated recycling of the mutant receptor and a concomitant defect in ligand-induced ubiquitylation and endocytosis of EGFR. Kinetic as well as morphological analyses of the internalization-defective mutant receptor imply that c-Cbl-mediated ubiquitylation sorts EGFR to endocytosis and to subsequent degradation in lysosomes. Unexpectedly, however, the mutant receptor displayed significant residual ligand-induced ubiquitylation, especially in the presence of an overexpressed c-Cbl. The underlying mechanism seems to involve recruitment of a Grb2 c-Cbl complex to Grb2-specific docking sites of EGFR, and concurrent acceleration of receptor ubiquitylation and desensitization. Thus, in addition to its well-characterized role in mediating positive signals, Grb2 can terminate signal transduction by accelerating c-Cbl-dependent sorting of active tyrosine kinases to destruction.  相似文献   

3.
Tom1L1(Tom1 like 1)参与并调节细胞信号转导及受体运输通路。在不同细胞中Tom1L1对信号转导具有不同的调节作用。Tom1L1-CHC(clathrinheavychain)复合物减少Src蛋白在小窝(caveolae)处富集,从而阻碍Src蛋白与血小板衍生因子(platelet derived growth factor,PDGF)受体的结合。抑制PDGF受体介导的有丝分裂和转化信号传导。活化的表皮生长因子受体(epidermal growth factor receptor,EGFR)通过Src家族蛋白激酶(src family kinase,SFK)磷酸化T0m1L1,磷酸化的Tom1L1通过Grb2和Shc的桥梁作用与EGFR结合,介导EGFR的内吞进程。Tom1L1和Hrs(hepatocyte growth factor regulated tyrosine kinase substrate)、TSG101(tumor susceptibility gene 101)的相互作用表明,它也可能参与了泛素化蛋白分选入多泡体的过程。该文就其在细胞信号转导通路及受体内吞/分选过程的作用作一综述。  相似文献   

4.
How the cell converts graded signals into threshold‐activated responses is a question of great biological relevance. Here, we uncover a nonlinear modality of epidermal growth factor receptor (EGFR)‐activated signal transduction, by demonstrating that the ubiquitination of the EGFR at the PM is threshold controlled. The ubiquitination threshold is mechanistically determined by the cooperative recruitment of the E3 ligase Cbl, in complex with Grb2, to the EGFR. This, in turn, is dependent on the simultaneous presence of two phosphotyrosines, pY1045 and either one of pY1068 or pY1086, on the same EGFR moiety. The dose–response curve of EGFR ubiquitination correlate precisely with the non‐clathrin endocytosis (NCE) mode of EGFR internalization. Finally, EGFR‐NCE mechanistically depends on EGFR ubiquitination, as the two events can be simultaneously re‐engineered on a phosphorylation/ubiquitination‐incompetent EGFR backbone. Since NCE controls the degradation of the EGFR, our findings have implications for how the cell responds to increasing levels of EGFR signalling, by varying the balance of receptor signalling and degradation/attenuation.  相似文献   

5.
Little is known about lung carcinoma epidermal growth factor (EGF) kinase pathway signaling within the context of the tissue microenvironment. We quantitatively profiled the phosphorylation and abundance of signal pathway proteins relevant to the EGF receptor within laser capture microdissected untreated, human non-small cell lung cancer (NSCLC) (n = 25) of known epidermal growth factor receptor (EGFR) tyrosine kinase domain mutation status. We measured six phosphorylation sites on EGFR to evaluate whether EGFR mutation status in vivo was associated with the coordinated phosphorylation of specific multiple phosphorylation sites on the EGFR and downstream proteins. Reverse phase protein array quantitation of NSCLC revealed simultaneous increased phosphorylation of EGFR residues Tyr-1148 (p < 0.044) and Tyr-1068 (p < 0.026) and decreased phosphorylation of EGFR Tyr-1045 (p < 0.002), HER2 Tyr-1248 (p < 0.015), IRS-1 Ser-612 (p < 0.001), and SMAD Ser-465/467 (p < 0.011) across all classes of mutated EGFR patient samples compared with wild type. To explore which subset of correlations was influenced by ligand induction versus an intrinsic phenotype of the EGFR mutants, we profiled the time course of 115 cellular signal proteins for EGF ligand-stimulated (three dosages) NSCLC mutant and wild type cultured cell lines. EGFR mutant cell lines (H1975 L858R) displayed a pattern of EGFR Tyr-1045 and HER2 Tyr-1248 phosphorylation similar to that found in tissue. Persistence of phosphorylation for AKT Ser-473 following ligand stimulation was found for the mutant. These data suggest that a higher proportion of the EGFR mutant carcinoma cells may exhibit activation of the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (MTOR) pathway through Tyr-1148 and Tyr-1068 and suppression of IRS-1 Ser-612, altered heterodimerization with ERBB2, reduced response to transforming growth factor beta suppression, and reduced ubiquitination/degradation of the EGFR through EGFR Tyr-1045, thus providing a survival advantage. This is the first comparison of multiple, site-specific phosphoproteins with the EGFR tyrosine kinase domain mutation status in vivo.  相似文献   

6.
The growth hormone receptor (GHR) intracellular domain contains all of the information required for signal transduction as well as for endocytosis. Previously, we showed that the proteasome mediates the clathrin-mediated endocytosis of the GHR. Here, we present evidence that the proteasomal inhibitor MG132 prolongs the GH-induced activity of both GHR and JAK2, presumably through stabilization of GHR and JAK2 tyrosine phosphorylation. If proteasomal inhibitor was combined with ligand in an endocytosis-deficient GHR mutant, the same phenomenon occurred indicating that proteasomal action on tyrosine dephosphorylation is independent of endocytosis. Experiments with a GHR-truncated tail mutant (GHR-(1-369)) led to a prolonged JAK2 phosphorylation caused by the loss of a phosphatase-binding site. This raised the question of what happens to the signal transduction of the GHR after its internalization. Co-immunoprecipitation of GH.GHR complexes before and after endocytosis showed that JAK2 as well as other activated proteins are bound to the GHR not only at the cell surface but also intracellularly, suggesting that the GHR signal transduction continues in endosomes. Additionally, these results provide evidence that GHR is present in endosomes both in its full-length and truncated form, indicating that the receptor is down-regulated by the proteasome.  相似文献   

7.
Hsieh M  Thao K  Conti M 《PloS one》2011,6(6):e21574
Recent evidence that luteinizing hormone (LH) stimulation of ovulatory follicles causes transactivation of the epidermal growth factor receptor (EGFR) has provided insights into the mechanisms of ovulation. However, the complete array of signals that promote oocyte reentry into the meiotic cell cycle in the follicle are still incompletely understood. To elucidate the signaling downstream of EGFR involved in oocyte maturation, we have investigated the LH responses in granulosa cells with targeted ablation of EGFR. Oocyte maturation and ovulation is disrupted when EGFR expression is progressively reduced. In granulosa cells from mice with either global or granulosa cell-specific disruption of EGFR signaling, LH-induced phosphorylation of MAPK3/1, p38MAPK, and connexin-43 is impaired. Although the LH-induced decrease in cGMP is EGFR-dependent in wild type follicles, LH still induces a decrease in cGMP in Egfr(delta/f) Cyp19-Cre follicles. Thus compensatory mechanisms appear activated in the mutant. Spatial propagation of the LH signal in the follicle also is dependent on the EGF network, and likely is important for the control of signaling to the oocyte. Thus, multiple signals and redundant pathways contribute to regulating oocyte reentry into the cell cycle.  相似文献   

8.
The ubiquitin-proteasome system is required in growth hormone receptor (GHR) endocytosis. For cytokine receptors, which lack intrinsic tyrosine kinase activity, signal transduction is initiated by the activation of a member of the Janus kinase (JAK) family. Previously, we have shown that GHR and JAK2 tyrosine (de) phosphorylation are regulated via the ubiquitin system. In this study, we examined the role of JAK2-mediated signal transduction in GHR internalization and down-regulation. Mutation of the attachment site for JAK2, box-1, in the GHR cytoplasmic tail resulted in the complete absence of GHR and JAK2 phosphorylation. This modification did not alter the rate and extent of receptor-bound growth hormone internalization as compared with a functional GHR, nor did it change its turnover and transport to the plasma membrane. In addition, the receptor was still normally ubiquitinated and remained dependent on both an intact ubiquitin system and proteasomal action for its internalization. Thus, GHR ubiquitination, endocytosis, and degradation occur independently of GHR signal transduction via JAK2. We conclude that whereas endocytosis and degradation require the ubiquitin system, they are independent of GHR signal transduction.  相似文献   

9.
BACKGROUND: Receptors belonging to the epidermal growth factor receptor (EGFR) family transfer extracellular signals by homotypic and heterotypic receptor interaction and cross-activation. Cell differentiation, death, and proliferation are regulated via these receptor-tyrosine-kinases. However, the initial mechanisms that lead to signal specificity and diversity, which cause a defined cellular response, are incompletely understood. We investigated the recruitment of receptor complexes in two c-erbB2-overexpressing breast carcinoma cell lines, SK-BR-3 and BT474, after ligand binding and its effects on intracellular signal transduction and cell cycle regulation. METHODS: In order to analyze the coaggregation of receptors on the cell surface induced by specific growth factor treatment, we used the flow cytometric Foerster-type fluorescence resonance energy transfer (FRET) technique. Cell cycle kinetics were monitored flow cytometrically via the anti-BrdU technique and acitivation of intracellular signal cascades was analyzed by Western blotting. RESULTS: After stimulation with EGF BT474, but not SK-BR-3, cells formed EGFR/c-erbB2 receptor complexes. Neither EGF nor heregulin (HRG) induced c-erbB2/c-erbB3 receptor complexes in BT474. However, SK-BR-3 cells exhibited a high amount of c-erbB2/c-erbB3 heterodimers even without growth factor stimulation which could be elevated after prolonged EGF and HRG treatment. In both cell lines, mitogen-activated protein kinase (MAPK) phosphorylation was detectable after short-term and prolonged EGF and HRG treatment. However, only SK-BR-3 cells showed a constitutive activation of both protein kinase B (PKB)/Akt and MAPK signaling pathways. Growth factor treatment caused an amplified PKB/Akt activation in this cell line. The induction of EGFR/c-erbB2 complexes in BT474 was associated with shortening of the G1-phase of the cell cycle. In contrast, the concurrent activation of MAPK and PKB/Akt by EGF treatment led to an inhibition of proliferation in SK-BR-3 and can be attributed to missing EGFR/c-erbB2 heterodimers. HRG was a strong stimulator of proliferation in both cell lines. CONCLUSIONS: We show that in the presence of identical amounts of c-erbB2 receptors, the ligand-induced cellular response differs significantly. These differences were mediated by variances in signal transduction, most likely due to different recruitment of heterotypic receptor complexes. Overall, there is strong evidence that c-erbB2 receptor overexpression in breast cancer cells is an insufficient marker to determine cellular response in terms of cell proliferation. 2001.  相似文献   

10.
Activation of both receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs) result in phosphorylation of the adaptor protein Shc, providing sites of interaction for proteins in downstream signal transduction cascades. The mechanism of Shc phosphorylation and its function in G protein signaling pathways is still unclear. By examining Shc phosphorylation in response to thrombin in two cell lines, we have defined distinct pertussis toxin (PTX)-sensitive and -insensitive mechanisms by which GPCRs can stimulate tyrosine phosphorylation of Shc. By mutating the tyrosines in Shc, we show that the three sites of tyrosine phosphorylation, Y239, Y240, and Y317, are necessary for thrombin signaling in both systems. The SH2 (src homology 2) domain of Shc is also critical for signaling, but not required for phosphorylation of Shc. In both cell types, inhibition of src family member kinases by chemical inhibitors or microinjection block Shc phosphorylation and bromodeoxyuridine (BrdU) incorporation in response to thrombin. However, in the PTX-sensitive thrombin pathway, both betagamma function and the epidermal growth factor receptor (EGFR) are necessary for Shc phosphorylation and BrdU incorporation. In contrast, signaling in the PTX-insensitive pathway is not mediated through betagamma or the EGFR. Thus, while phosphorylation and function of Shc appear to be the same in both thrombin pathways, the mechanism of tyrosine kinase activation proximal to Shc is different. The differences in signaling between the two thrombin pathways may be representative of mechanisms used by other PTX-sensitive and -insensitive GPCRs to mediate specific responses. In addition, transactivation of RTKs may be a manner by which GPCRs can amplify their signal.  相似文献   

11.
Surface cAMP receptors on Dictyostelium cells are linked to several second messenger systems and mediate multiple physiological responses, including chemotaxis and differentiation. Activation of the receptor also triggers events which desensitize signal transduction. These events include the following: 1) loss of ligand binding without loss of receptor protein; 2) phosphorylation of the receptor protein, which may lead to impaired signal transduction; 3) redistribution and degradation of the receptor protein; and 4) decrease of cyclic AMP (cAMP) receptor mRNA levels. These mechanisms of desensitization were investigated with the use of mutant synag7, with no activation of adenylyl cyclase; fgdC, with no activation of phospholipase C; and fgdA, with defects in both pathways. cAMP-induced receptor phosphorylation and loss of ligand binding activity was normal in all mutants. In contrast, cAMP-induced degradation of the receptor was absent in all mutants. The cAMP-induced decrease of cAMP-receptor mRNA levels was normal in mutant synag7, but absent in mutant fgdC. Finally, the cAMP analogue (Rp)-cAMPS induced loss of ligand binding without inducing second messenger responses or phosphorylation, redistribution, and degradation of the receptor. We conclude that 1) loss of ligand binding can occur in the absence of receptor phosphorylation; 2) loss of ligand binding and receptor phosphorylation do not require the activation of second messenger systems; 3) cAMP-induced degradation of the receptor may require the phosphorylation of the receptor as well as the activation of at least the synag7 and fgdC gene products; and 4) cAMP-induced decrease of receptor mRNA levels requires the activation of the fgdC gene product and not the synag7 gene product. These results imply that desensitization is composed of multiple components that are regulated by different but partly overlapping sensory transduction pathways.  相似文献   

12.
Agonist-induced phosphorylation, internalization, and intracellular trafficking of G protein-coupled receptors are critical in regulating both cellular responsiveness and signal transduction. The current study investigated the role of receptor phosphorylation state in regulation of agonist-induced internalization and intracellular trafficking of mu-opioid receptor (MOR). Our results showed that after agonist stimulation, the recycle of a mutant MOR that lacks the C-terminal residues after Asn(362) (MOR362T) was greatly decreased, whereas a C-terminal phosphorylation sites-mutated MOR (MOR3A), which is deficient in agonist-induced phosphorylation recycled back to the membrane at a level comparable to that of the wild-type receptor, however, interestingly at a slower rate. Inhibition of functions of either Rab4 or Rab11 by dominant-negative mutants and small interfering RNA both significantly impaired the recycling of the wild-type MOR, whereas the recycling of the phosphorylation-deficient mutant was only inhibited by the dominant-negative mutant and small interfering RNA of Rab11, suggesting that the recycling of nonphosphorylated MOR is exclusively via Rab11-mediated pathway. Furthermore, phosphorylated MOR was observed accumulated in Rab5- and Rab4-, but not Rab11-positive vesicles. Our data indicate that both phosphorylated and nonphosphorylated MOR internalize via Rab5-dependent pathway after agonist stimulation, and the phosphorylated and nonphosphorylated MORs recycle through distinct vesicular trafficking pathways mediated by Rab4 and Rab11, respectively, which may ultimately lead to differential cellular responsiveness or downstream signaling.  相似文献   

13.
Although many proteins have been shown to participate in ligand‐stimulated endocytosis of EGF receptor (EGFR), the adaptor protein responsible for interaction of activated EGFR with endocytic machinery remains elusive. We show here that EGF stimulates transient tyrosine phosphorylation of Tom1L1 by the Src family kinases, resulting in transient interaction of Tom1L1 with the activated EGFR bridged by Grb2 and Shc. Cytosolic Tom1L1 is recruited onto the plasma membrane and subsequently redistributes into the early endosome. Mutant forms of Tom1L1 defective in Tyr‐phosphorylation or interaction with Grb2 are incapable of interaction with EGFR. These mutants behave as dominant‐negative mutants to inhibit endocytosis of EGFR. RNAi‐mediated knockdown of Tom1L1 inhibits endocytosis of EGFR. The C‐terminal tail of Tom1L1 contains a novel clathrin‐interacting motif responsible for interaction with the C‐terminal region of clathrin heavy chain, which is important for exogenous Tom1L1 to rescue endocytosis of EGFR in Tom1L1 knocked‐down cells. These results suggest that EGF triggers a transient Grb2/Shc‐mediated association of EGFR with Tyr‐phosphorylated Tom1L1 to engage the endocytic machinery for endocytosis of the ligand–receptor complex.  相似文献   

14.
Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is known to play an important role in signal transduction and membrane trafficking. We show that one enzyme responsible for PIP(2) production, phosphatidylinositol-4-phosphate 5-kinase type 1beta (PIPKbeta), is essential for epidermal growth factor receptor (EGFR)-mediated endocytosis. Expression of murine PIPKbeta in NR6 cells expressing EGFR strikingly increased receptor internalization. Moreover, the kinase was shown to form an immunoprecipitable complex with EGFR. Expression of either a truncated kinase or a kinase dead mutant inhibited EGFR endocytosis and also blocked the membrane recruitment of PIPKbeta and both clathrin light chain and dynamin. Our results delineate a novel mechanism by which PIPKbeta regulates receptor-mediated endocytosis and receptor tyrosine kinase membrane traffic.  相似文献   

15.
Activation of the T‐cell receptor (TCR) and that of the B‐cell receptor (BCR) elicits tyrosine‐phosphorylation of proteins that belongs to similar functional categories, but result in distinct cellular responses. Large‐scale analyses providing an overview of the signaling pathways downstream of TCR or BCR have not been described, so it has been unclear what components of these pathways are shared and which are specific. We have now performed a systematic analysis and provide a comprehensive list of tyrosine‐phosphorylated proteins (PY proteome) with quantitative data on their abundance in T cell, B cell, and nonlymphoid cell lines. Our results led to the identification of novel tyrosine‐phosphorylated proteins and signaling pathways not previously implicated in immunoreceptor signal transduction, such as clathrin, zonula occludens 2, eukaryotic translation initiation factor 3, and RhoH, suggesting that TCR or BCR signaling may be linked to downstream processes such as endocytosis, cell adhesion, and translation. Thus comparative and quantitative studies of tyrosine‐phosphorylation have the potential to expand knowledge of signaling networks and to promote understanding of signal transduction at the system level.  相似文献   

16.
Microparticles (MPs) are small membrane fragments shed from normal as well as activated, apoptotic or injured cells. Emerging evidence implicates MPs as a causal and/or contributing factor in altering normal vascular cell phenotype through initiation of proinflammatory signal transduction events and paracrine delivery of proteins, mRNA and miRNA. However, little is known regarding the mechanism by which MPs influence these events. Caveolae are important membrane microdomains that function as centers of signal transduction and endocytosis. Here, we tested the concept that the MP-induced pro-inflammatory phenotype shift in endothelial cells (ECs) depends on caveolae. Consistent with previous reports, MP challenge activated ECs as evidenced by upregulation of intracellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 upregulation was mediated by activation of NF-κB, Poly [ADP-ribose] polymerase 1 (PARP-1) and the epidermal growth factor receptor (EGFR). This response was absent in ECs lacking caveolin-1/caveolae. To test whether caveolae-mediated endocytosis, a dynamin-2 dependent process, is a feature of the proinflammatory response, EC’s were pretreated with the dynamin-2 inhibitor dynasore. Similar to observations in cells lacking caveolin-1, inhibition of endocytosis significantly attenuated MPs effects including, EGFR phosphorylation, activation of NF-κB and upregulation of ICAM-1 expression. Thus, our results indicate that caveolae play a role in mediating the pro-inflammatory signaling pathways which lead to EC activation in response to MPs.  相似文献   

17.
The epidermal growth factor receptor (ErbB1 or EGFR) has been found to be altered in a variety of human cancers. A number of agents targeting these receptors, including specific antibodies directed against the ligand-binding domain of the receptor and small molecules that inhibit kinase activity are either in clinical trials or are already approved for clinical treatment. However, identifying patients that are likely to respond to such treatments has been challenging. As a consequence, it still remains important to identify additional alterations of the tumor cell that contribute to the response to EGFR-targeted agents. While EGFR-mediated signalling pathways have been well established, there is still a rather limited understanding of how intracellular protein-protein interactions, ubiquitination, endocytosis and subsequent degradation of EGFR contribute to the determination of sensitivity to EGFR targeting agents and are emerging areas of investigation. This review primarily focuses on the basic signal transduction pathways mediated through activated membrane bound and/or endosomal EGFR and emphasizes the need to co-target additional proteins that function either upstream or downstream of EGFR to improve cancer therapy.  相似文献   

18.
19.
Ung CY  Li H  Ma XH  Jia J  Li BW  Low BC  Chen YZ 《FEBS letters》2008,582(15):2283-2290
Deregulations of EGFR endocytosis in EGFR-ERK signaling are known to cause cancers and developmental disorders. Mutations that impaired c-Cbl-EGFR association delay EGFR endocytosis and produce higher mitogenic signals in lung cancer. ROCK, an effector of small GTPase RhoA was shown to negatively regulate EGFR endocytosis via endophilin A1. A mathematical model was developed to study how RhoA and ROCK regulate EGFR endocytosis. Our study suggested that over-expressing RhoA as well as ROCK prolonged ERK activation partly by reducing EGFR endocytosis. Overall, our study hypothesized an alternative role of RhoA in tumorigenesis in addition to its regulation of cytoskeleton and cell motility.  相似文献   

20.
Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly. EGF-mediated clathrin phosphorylation is followed by clathrin redistribution to the cell periphery and is the product of downstream activation of SRC kinase by EGF receptor (EGFR) signaling. In cells lacking SRC kinase, or cells treated with a specific SRC family kinase inhibitor, EGF stimulation of clathrin phosphorylation and redistribution does not occur, and EGF endocytosis is delayed. These observations demonstrate a role for SRC kinase in modification and recruitment of clathrin during ligand-induced EGFR endocytosis and thereby define a novel effector mechanism for regulation of endocytosis by receptor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号