首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
1. Since avoiding predation can compromise animal fitness, prey are expected to respond to different predator species with an intensity appropriate to the level of risk. In fresh waters, the threat of predation is typically assessed by chemical cues, in particular by odours released by either injured/disturbed conspecifics (conspecific alarm odour) or predators (predator odours). Here, we used the most widely distributed crayfish in the world, the invasive North American Procambarus clarkii, to investigate the relative effectiveness of odours emitted by fish predators compared with conspecific alarm odour. We also tested whether P. clarkii is able to discriminate between fish predators of which it has ‘experience’ (either recent, via introduction to the same water body, or old, by sharing a native range), as well as between fish predators that pose low or high risk. 2. The study was carried out on introduced populations of P. clarkii from two sites, characterised by different fish assemblages: the Malewa River (a tributary of Lake Naivasha, Kenya) and Lake Trasimeno (Italy). Laboratory experiments consisted of three sequential phases (‘water’, ‘food’ and ‘smell’ phases) and five treatments. Treatments differed in the odour presented during the smell phase, i.e. no odour (plain water) and odours from either injured conspecifics or three fish species per site. Crayfish from the Malewa River population were confronted with the odours of largemouth bass (Micropterus salmoides), common carp (Cyprinus carpio) and tilapia (Tilapia zillii) (all introduced to Lake Naivasha but absent from the Malewa River), and those from the Lake Trasimeno population with the odours of the introduced largemouth bass and carp and the native chub (Squalius cephalus). Largemouth bass is the only predator that imposes a high risk to crayfish, and it also shares its native range with P. clarkii. We analysed the time spent by crayfish feeding, in locomotion and in adopting a raised or lowered posture. A reduction in the time spent feeding and in locomotion, and an increase in the time spent in the lowered posture were considered to indicate alarm. 3. Crayfish from both populations responded with a more pronounced reduction in feeding to conspecific alarm odour rather than to predator odours. Crayfish from the Malewa River reacted with the same intensity to the odours of the three fish species tested, whereas, in Lake Trasimeno, the odour of largemouth bass was significantly more threatening than the odours of the other two species. 4. Procambarus clarkii seems to perceive a general fish odour that alerts it to possible predation risk without the need of either a direct recent experience or via sharing a common native range. However, where they coexist with fish, crayfish become able to distinguish among species, adapting the intensity of their response to the effective risk. Our results confirm the relatively high learning capacity of P. clarkii reported in previous studies and suggest the existence of mechanisms that make predator recognition particularly efficient in this extraordinarily successful invader.  相似文献   

2.
Synopsis Suwannee bass,Micropterus notius, and largemouth bass,Micropterus salmoides, were collected by electrofishing in six habitats in the lower Santa Fe River, Florida during May 1981–March 1982. Both bass species were collected concomitantly in all habitats and habitat segregation was not evident. Crayfish (Procambarus spp.) were the primary food of Suwannee bass. Fish were the primary food of largemouth bass, but crayfish were common in the diet of largemouth bass ≥300 mm long. Suwannee bass have a greater throat width and consumed longer and wider forage than did largemouth bass of equal length. Available evidence suggests that Suwannee bass exhibit a positive selection for crayfish and a diverse forage resource, including abundant crayfish, is necessary for a Suwannee bass to coexist with a largemouth bass. This is Journal Series Number 6034 of the Florida Agricultural Experiment Station.  相似文献   

3.
The ecology of largemouth bass (Micropterus salmoides) is one of the best known for freshwater fish, though largely through studies within its native range (North America). I studied the habitat and diet of a bass population introduced into a Mediterranean lake. The bass displayed strong ontogenetic diet shifts as follows: young‐of‐the‐year <25 mm fed on microcrustaceans; fish 25–75 mm, on amphipods and insects; fish 100–225 mm, on a freshwater shrimp, small fish and insects; fish 250–300 mm, on shrimp or crayfish; and fish >300 mm, on crayfish and large fish. The diet showed several differences from most previous studies: importance of freshwater shrimp instead of insects, low piscivory, and a delay in the ontogenetic shift to piscivory. Moreover, the ontogenetic shift to piscivory was interrupted at 250–300 mm, with consumption of shrimp and crayfish. This interruption of piscivory has been largely unreported and seems a consequence of the size‐structure and species composition of the fish assemblage. A review of the literature suggests that piscivory by largemouth bass might be generally lower in populations introduced outside North America.  相似文献   

4.
Synopsis The potential for feeding competition between largemouth bass, Micropterus salmoides, and blue tilapia, Oreochromis areus, in Lake Fairfield, Texas was evaluated experimentally. Largemouth bass and blue tilapia were grown in cages alone and in combination with each other. The fish were allowed to feed on the natural food within the lake. Largemouth bass grown in combination with blue tilapia were significantly shorter and weighed less than largemouth bass grown alone. Blue tilapia grown in combination with largemouth bass were statistically significantly longer and heavier than blue tilapia grown alone. Largemouth bass grown alone had diets (volume and number of food items) significantly different than the largemouth bass grown with the blue tilapia. Largemouth bass fed primarily on chironomid larvae and pupae, and odonates, whereas blue tilapia consumed vegetable matter, detritus, and chironomid larvae. Length and weight differences between large-mouth bass grown alone and in combination with blue tilapia, in conjunction with the largemouth bass diet shift, support the theory that these two species compete for food resources.  相似文献   

5.
The introduction of largemouth bass (Micropterus salmoides) and bluegill sunfish (Lepomis macrochirus) into the freshwater ecosystems of Japan has resulted in the suppression and/or replacement of native species, generating considerable concerns among resource managers. The impacts of largemouth bass and bluegill on native fauna have been examined in aquaria and isolated farm ponds, but there is limited work examining the likelihood to fundamentally modifying Japan's lakes. The objective of the present study is to examine the direct and synergistic ecological effects of largemouth bass and bluegill on the biotic communities of Lake Kawahara-oike, Nagasaki, Japan, using an ecosystem (Ecopath) modeling approach. Specifically, we examine whether the two fish species have played a critical role in shaping the trophodynamics of the lake. We attempt to shed light on the trophic interactions between largemouth bass and bluegill and subsequently evaluate to what extent these interactions facilitate their establishment at the expense of native species. We also examine how these changes propagate through the Lake Kawahara-oike food web. Our study suggests that the introduction of bluegill has induced a range of changes at multiple trophic levels. The present analysis also provides evidence that largemouth bass was unable to exert significant top-down control on the growth rates of the bluegill population. Largemouth bass and bluegill appear to prevail over the native fish species populations and can apparently coexist in large numbers in invaded lakes. Future management strategies controlling invasive species are urgently required, if the integrity of native Japanese fish communities is to be protected.  相似文献   

6.
Top–down control of phytoplankton biomass through piscivorous fish manipulation has been explored in numerous ecological and biomanipulation experiments. Piscivores are gape-limited predators and it is hypothesized that the distribution of gape sizes relative to distribution of body depths of prey fish may restrict piscivore effects cascading to plankton. We examined the top–down effects of piscivorous largemouth bass on nutrients, turbidity, phytoplankton, zooplankton and fish in ponds containing fish assemblages with species representing a range of body sizes and feeding habits (western mosquitofish, bluegill, channel catfish, gizzard shad and common carp). The experimental design consisted of three replicated treatments: fishless ponds (NF), fish community without largemouth bass (FC), and fish community with largemouth bass (FCB). Turbidity, chlorophyll a, cyclopoid copepodid and copepod nauplii densities were significantly greater in FC and FCB ponds than in NF ponds. However, these response variables were not significantly different in FC and FCB ponds. The biomass and density of shallow-bodied western mosquitofish were reduced and bluegill body depths shifted toward larger size classes in the presence of largemouth bass, but the biomass and density of all other fish species and of the total fish community were unaffected by the presence of largemouth bass. Our results show that top–down impacts of largemouth bass in ecosystems containing small- and deep-bodied fish species may be most intense at the top of the food web and alter the size distribution and species composition of the fish community. However, these top–down effects may not cascade to the level of the plankton when large-bodied benthivorous fish species are abundant.  相似文献   

7.
Introduced largemouth bass (Micropterus salmoides spp.) and bluegill (Lepomis macrochirus spp.) are thought to threaten native aquatic organisms worldwide and hence their eradication has recently begun in Japan. Our previous studies suggested that the removal of largemouth bass increases native fish, shrimp, dragonflies, and exotic crayfish, but decreases macrophytes. To test this prediction, we removed the exotic fishes by draining farm ponds and compared the numbers of these organisms before and after the drain, as well as between drained and undrained ponds. The number of dragonfly Pseudothemis zonata, crayfish, shrimp, and goby increased rapidly after the drain, but the coverage of macrophyte declined. The reduction in macrophyte is assumed to be caused by increased herbivory by crayfish. The number of exuviae of damselfly Cercion calamorum and the total number of species of odonate also decreased after the drain. These decreases can be due to the reduction of macrophyte because reduced odonate species are known to use macrophytes as oviposition sites. Therefore, the removal of largemouth bass has a potential to cause negative effects on some native organisms. We propose that reduction of exotic crayfish should be considered when eradicating the exotic fishes.  相似文献   

8.
Largemouth bass Micropterus salmoides Lacepède growth (in length) increased an average of 14% and bioenergetics modeling predicted a 38% increase in total annual food consumption following a large-scale reduction of hydrilla Hydrilla verticillata L.f. Royle in Spring Creek, a 2,343-ha embayment of Lake Seminole, Georgia. Coverage of submersed aquatic vegetation (SAV) declined from 76% to 22% in 1 year due to a drip-delivery fluridone treatment. In contrast, largemouth bass growth only increased an average of 4% and bioenegetics modeling predicted a 13% increase in total food consumption over the same time period in the Chattahoochee River embyament, where SAV coverage naturally declined from 26% to 15%. Diets were collected from a total of 4,409 largemouth bass over a 2.5-year period in the two embayments; the primary diet item (by weight) for largemouth bass in both embayments was sunfish (mostly Lepomis spp.). Diets before and after SAV reduction were generally similar for fish greater than stock-size (≥203 mm) in the Spring Creek arm; however, fewer invertebrates were consumed after SAV reduction. Low diet similarity was observed in smaller fish, caused by a decline in consumption of grass shrimp and sunfishes and an increase in use of damselflies, shiners Notropis spp., and topminnows Fundulus spp. after SAV reduction. Diets were similar between the same time periods for all sizes of fish in the Chattahoochee River arm. These results agreed with many laboratory results describing the effects of aquatic plant density on largemouth bass food consumption and growth, and demonstrated that increased predation efficiency resulting from decreased plant abundance was likely a stronger factor determining growth rates than any potential diet shift that may occur as a result in vegetation decline.  相似文献   

9.
Predation risk can affect habitat selection by water column stream fish and crayfish, but little is known regarding effects of predation risk on habitat selection by benthic fish or assemblages of fish and crayfish. I used comparative studies and manipulative field experiments to determine whether, (1) habitat selection by stream fish and crayfish is affected by predation risk, and (2) benthic fish, water column fish, and crayfish differ in their habitat selection and response to predation risk. Snorkeling was used to observe fish and crayfish in, (1) unmanipulated stream pools with and without large smallmouth bass predators (Micropterus dolomieui >200 mm total length, TL) and (2) manipulated stream pools before and after addition of a single large smallmouth bass, to determine if prey size and presence of large fish predators affected habitat selection. Observations of microhabitat use were compared with microhabitat availability to determine microhabitat selection. Small fish (60–100 mm TL, except darters that were 30–100 mm TL) and crayfish (40–100 mm rostrum to telson length; TL) had significantly reduced densities in pools with large bass, whereas densities of large fish and crayfish (> 100 mm TL) did not differ significantly between pools with and without large bass. Small orangethroat darters (Etheostoma spectabile), northern crayfish (Orconectes virilis), and creek chubs (Semotilus atromaculatus) showed significantly greater densities in pools without large bass. The presence of large smallmouth bass did not significantly affect depths selected by fish and crayfish, except minnows, which were found significantly more often at medium depths when bass were present. Small minnows and large and small crayfish showed the greatest response to additions of bass to stream pools by moving away from bass locations and into shallow water. Small darters and sunfish showed an intermediate response, whereas large minnows showed no significant response to bass additions. Response to predation risk was dependent on prey size and species, with preferred prey, crayfish and small minnows, showing the greatest response. Small benthic fish, such as darters, are intermediate between small water column fish and crayfish and large water column fish in their risk of predation from large smallmouth bass.  相似文献   

10.
Frank Clark 《Hydrobiologia》1992,248(2):115-124
Micronecta scutellaris is one of the most abundant macro-invertebrates found in Lake Naivasha, Kenya and forms an important component of the diet of juvenile large mouthed bass.Its distribution in the lake and breeding biology are described and considered in relation to the lake's food chains.  相似文献   

11.
1. The introduction of invasive species is one of the main threats to global biodiversity, ecosystem structure and ecosystem processes. In freshwaters, invasive crayfish alter macroinvertebrate community structure and destroy macrophyte beds. There is limited knowledge on how such invasive species‐driven changes affect consumers at higher trophic levels. 2. In this study, we explore how the invasive rusty crayfish Orconectes rusticus, a benthic omnivore, affects benthic macroinvertebrates, as well as the broader consequences for ecosystem‐level trophic flows in terms of fish benthivory and trophic position (TP). We expected crayfish to decrease abundance of benthic macroinvertebrates, making most fish species less reliant on benthic resources. We expected crayfish specialists (e.g. Lepomis sp. and Micropterus sp.) to increase their benthic dependence. 3. In 10 northern Wisconsin lakes, we measured rusty crayfish relative abundance (catch per unit effort, CPUE), macroinvertebrate abundance, and C and N stable isotope ratios of 11 littoral fish species. We used stable isotope data and mixing models to characterise the trophic pathways supporting each fish species, and related trophic structure to crayfish relative abundance, fish body size and abiotic predictors using hierarchical Bayesian models. 4. Benthic invertebrate abundance was negatively correlated with rusty crayfish relative abundance. Fish benthivory increased with crayfish CPUE for all 11 fish species; posterior probabilities of a positive effect were >95%. TP also increased slightly with crayfish CPUE for some species, particularly smallmouth bass, largemouth bass, rock bass and Johnny darter. Moreover, both fish body size and lake abiotic variables explained variation in TP, while their effects on benthivory were small. 5. Rusty crayfish abundance explained relatively little of the overall variation in fish benthivory and TP. Although rusty crayfish appear to have strong effects on abundances of benthic macroinvertebrates, energy flow pathways and trophic niches of lentic fishes were not strongly influenced by invasive rusty crayfish.  相似文献   

12.
A total of 65 largemouth bass, Micropterus salmoides, and 27 smallmouth bass, M. dolomieu, collected in April-September 2000 and April-July 2001 from Gull Lake, Michigan, were examined for acanthocephalans. Leptorhynchoides thecatus and Neoechinorhynchus cylindratus infected all the bass examined. Leptorhynchoides thecatus had the highest mean intensity (258.2 +/- 185.4 in 2000 and 145.0 +/- 61.0 in 2001) of the species infecting smallmouth bass. Although N. cylindratus had higher mean intensities (42.1 +/- 37.9 in 2000 and 68.9 +/- 70.5 in 2001) than did L. thecatus in largemouth bass, the values were not significantly different between bass species. The prevalence, mean intensity, and mean abundance of Pomphorhynchus bulbocolli in the bass species were below the values for the other acanthocephalan species. Leptorhynchoides thecatus and N. cylindratus are the most abundant intestinal helminths in bass from Gull Lake.  相似文献   

13.
Ontogenetic changes in diet and jaw gape were compared between two indigenous populations of largemouth bass, Micropterus salmoides, to test the hypothesis that ecomorphology varies among broadly distributed fish populations. Two hundred seventy-two temperate (southwestern Michigan) M. salmoides and 265 subtropical (east-central Florida) conspecifics were analyzed for food habits and oral jaw gape height and width. Percent volumetric contributions of four functional prey categories (plankton, insect, crustacean, and fish) were compared among fish-size classes to determine if interval-specific differences in prey consumption existed between populations. Subtropical M. salmoides shifted from feeding on plankton and macroinvertebrates to fish by 20mm standard length (SL); and stopped consuming plankton by 29mm SL. Temperate largemouth bass did not become piscivorous until 37mm SL and continued utilizing plankton up to 69mm SL. Following the onset of piscivory, 100–260mm SL subtropical largemouth bass began utilizing more crustaceans than fish. In contrast, temperate M. salmoides consistently fed on fish following the onset of piscivory. Variations in food habits were associated with differences in gape size between temperate and subtropical populations. Temperate largemouth bass had significantly larger gape height (ANCOVA: F = 103.4; df = 1,536; p < 0.001) and width (ANCOVA: F = 47.0; df = 1,536; p < 0.001) than subtropical bass. Although piscivory is a well-known feature of M. salmoides, the ontogeny of piscivory may vary between populations. We hypothesize that interpopulation differences in jaw gape may be related to variations in prey-resource utilization.  相似文献   

14.
Widespread mouth ulcerations were observed in largemouth bass collected from eight inland lakes in the Lower Peninsula of Michigan during the summer months of 2002 and 2003. These ulcerations were associated with, and most likely caused by, leech parasitism. Through the use of morphological dichotomous keys, it was determined that all leeches collected are of one species: Myzobdella lugubris. Among the eight lakes examined, Lake Orion and Devils Lake had the highest prevalence of leech parasitism (34% and 29%, respectively) and mouth ulcerations (53% and 68%, respectively). Statistical analyses demonstrated that leech and ulcer prevalence varied significantly from one lake to the other. Additionally, it was determined that the relationship between the prevalence of ulcers and the prevalence of leech attachment is significant, indicating that leech parasitism is most likely the cause of ulceration. The ulcers exhibited deep hemorrhagic centers and raised irregular edges. Affected areas lost their epithelial lining and submucosa, with masses of bacteria colonizing the damaged tissues. Since largemouth bass is a popular global sportfish and critical to the food web of inland lakes, there are concerns that the presence of leeches, damaged buccal mucosa, and general unsightliness may negatively affect this important sportfishery.  相似文献   

15.
This review focuses on how predator performance of the invasive largemouth bass [Micropterus salmoides (Lacepède)] has been, or will be, formed in Japanese freshwaters. Predation impacts of largemouth bass on fish communities appear pervasive in both Japanese as well as North American freshwaters. Factors affecting performance as a piscivorous predator are (1) light intensity and water clarity, (2) oxygen depletion, (3) prey size and gape size, (4) behavioral refuge of prey, (5) weed beds as refuge for prey fish, (6) interaction with bluegill. Size and behavioral refuges requirements are so rigorous that they may have evolved only in some North American prey fish species like bluegill; therefore, most Japanese native fish species are unlikely to be equipped with such refuges. However, refuge habitats like aquatic weed beds could develop in Japanese freshwaters, allowing prey fish species to survive under predation pressure. The density, architecture, and species composition of aquatic plants may affect their suitability as refuges. Studies in Japanese waters have suggested that the presence of rich aquatic vegetation or invasive bluegill in bass-introduced waters have suppressed the predation impact of largemouth bass on fish communities. In addition to these environmental factors, original genotypic and phenotypic traits of the introduced largemouth bass, and hybridization between different lineages of largemouth bass or with Florida bass [Micropterus floridanus (Lesueur)] may be involved in further adaptation of invasive largemouth bass to Japanese freshwaters.  相似文献   

16.
Growth of sympatric populations of three important sport fish species: bluegill Lepomis macrochirus , largemouth bass Micropterus salmoides and channel catfish Ictalurus punctatus , in 14 Illinois reservoirs was assessed in an attempt to relate size-specific growth to environmental conditions. Multiple regression relationships for most species and size classes explained a large percentage of the variation in growth. Growth of small bluegill (50 mm total length, L T) showed a strong negative relationship with bluegill catch per unit effort (cpue), per cent littoral area and pH. Large bluegill (150 mm L T) growth was negatively related to Daphnia spp. and benthic macroinvertebrate abundance and lake volume, and positively related to bluegill cpue. Growth of small (100 mm L T) and large (250 mm L T) largemouth bass was not well explained by any of the measured variables. Growth of both small (300 mm L T) and large (450 mm L T) channel catfish was strongly positively related to forage fishes and ichthyoplankton abundance, and per cent littoral area while negatively related to benthic macroinvertebrates. By identifying environmental conditions associated with increased growth rates, these models provide direction for managing fish populations and suggest testable hypotheses for future study of the complex interactions between environmental conditions and growth.  相似文献   

17.
We examined the cardiac responses of different fish species to anaerobic exercise at low temperatures (3 degrees C). Three species of sympatric warmwater fish with perceived differences in winter activity were used for this comparative study: the winter-quiescent largemouth bass (Micropterus salmoides); the winter-active white bass (Morone chrysops); and the intermediately winter-active black crappie (Pomoxis nigromaculatus). Perceived differences in winter activity were reflected in cardiac responses; e.g. basal cardiac values were lowest for largemouth bass, highest for white bass, and intermediate for black crappie. In addition, cardiac recovery was most rapid for white bass, slowest for largemouth bass and intermediate for black crappie. When disturbed at low temperatures, largemouth bass and black crappie elevated cardiac output principally through increases in heart rate despite substantial decreases in stroke volume. Conversely, white bass principally used stroke volume modulation to change cardiac output. The results of this study indicate that different species respond differently to exercise at low temperatures. Management strategies should recognize that such variation exists and ensure that management decisions are based upon an understanding of the low temperature exercise physiology and winter biology of the species of interest.  相似文献   

18.
 To test the size range of prey fish that largemouth bass, Micropterus salmoides, can successfully consume, live Japanese dace, Tribolodon hakonensis, were given as prey fish to individual largemouth bass in aquaria. The ratio of maximum standard length (SL) of the Japanese dace consumed by largemouth bass was 46–69% of bass SL. The maximum length of Japanese dace consumed did not differ significantly between largemouth bass and smallmouth bass (M. dolomieu) previously studied, although largemouth bass have relatively larger mouth sizes than smallmouth bass. Largemouth bass occasionally injured and killed Japanese dace larger than the limit that could be consumed.  相似文献   

19.
Annual cycles of growth and reproduction of hatchery–reared Florida largemouth bass, Micropterus salmoides floridanus , were investigated. Animals were raised on either forage (goldfish, Carassius auratus ) or a pelleted salmon feed. Male and female year–class 1 largemouth bass were sampled throughout one complete yearly cycle (January–December). A biphasic growth cycle was observed in both forage–fed and pellet–fed fish. No increase in body length or weight was observed until approximately midway through the spawning period (May), after which fish grew at a consistent rate for the remainder of the study. The reproductive cycle of forage–fed fish was characterized by a rapid increase in gonadosomatic index (GS1) between January and April, followed by a prolonged spawning period (April–July) during which GSI progressively declined. Fully regressed gonads were observed in September and October, and a resumption of gonadal recrudescence was observed between October and December. Visceral adipose deposits (expressed as mesenteric fat index; MFI) were resorbed during gonadal growth and the initial stages of the spawning period, and restored during the post–spawning phase. Fish raised on pelleted feed had growth and reproductive cycles that parallelled those of forage–fed fish, but several significant differences were observed between the two diet groups. During the growth phase of the cycle, pellet–fed largemouth bass grew significantly faster than forage–fed largemouth bass, and had significantly larger MFIs than forage–fed largemouth bass at all times of the year. Pellet–fed fish also had significantly larger GSIs than forage–fed fish. These data indicate that diet composition may be an important determinant of growth and reproductive function in this species.  相似文献   

20.
Raburu  Phil  Mavuti  Kenneth M.  Harper  David M.  Clark  Frank L. 《Hydrobiologia》2002,488(1-3):153-161
Lake Naivasha has been well studied since the 1930s but attempts to understand its ecological functioning have had to wait until enough was known about its structure. The energetics of the lake has only been studied to date at primary producer level. Following the identification of the invertebrate components of the littoral and profundal benthos, this study was initiated. The absence of native fish species in Lake Naivasha, combined with a fishery based only on three, introduced species, added an applied dimension to the work. The introduction of additional fish species which will utilize unexploited ecological niches has been suggested. The benthic invertebrates form one such niche. Two oligochaetes dominated the community, Branchiura sowerbyi Beddard and Limnodrilus hoffmeisteri Claparade. The former had a productivity of 7.4 g m–2 ann–1 (as dry weight), the latter 0.6. These figures are not particularly high and do not support the introduction of a new fish species on their own.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号