首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on Cellulose Hydrolysis by Acetivibrio cellulolyticus   总被引:3,自引:1,他引:2       下载免费PDF全文
Acetivibrio cellulolyticus extracellular cellulase extensively hydrolyzed crystalline celluloses such as Avicel (FMC Corp., Food and Pharmaceutical Products Div., Philadelphia, Pa.) but only if it was desalted and supplemented with Ca2+. The Ca2+ effect was one of increased enzyme stability in the presence of the ion. Although preincubation of the cellulase complex at 40°C for 5 h without added Ca2+ had a negligible effect on endoglucanase activity or on the subseqent hydrolysis of amorphous cellulose, the capacity of the enzyme to hydrolyze crystalline cellulose was almost completely lost. Adsorption studies showed that 90% of the Avicel-solubilizing component of the total enzyme preparation bound to 2% Avicel at 40°C. Under these conditions, only 15% of the endoglucanase and 25% of the protein present in the enzyme preparation adsorbed to the substrate. The protein profile of the bound enzyme, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was complex and distinctly different from the profile observed for total cellulase preparations. The specific activity of A. cellulolyticus cellulase with respect to Avicel hydrolysis was compared with that of commercially available Trichoderma reesei cellulase.  相似文献   

2.
The affinity digestion process for cellulase purification consisting of binding to amorphous cellulose, and amorphous cellulose hydrolysis in the presence of dialysis (Morag et al., 1991), was optimized to obtain high activity recoveries and consistent protein recoveries in the isolation of Clostridium thermocellum cellulase. Experiments were conducted using crude supernatant prepared from C. thermocellum grown on either Avicel or cellobiose. While no difference was observed between Avicel-grown or cellobiose-grown cellulase in the adsorption step, differences were observed during the hydrolysis step. The optimal amorphous cellulose loading was found to be 3 mg amorphous cellulose per milligram supernatant protein. At this loading, 90–100% of activity in the crude supernatant was adsorbed. Twenty-four-hour incubation with the amorphous cellulose during the adsorption stage was found to result in maximal and stable adsorption of activity to the substrate. By fitting the adsorption data to the Langmuir model, an adsorption constant of 410 L/g and a binding capacity of 0.249 g cellulase/g cellulose were obtained. The optimal length of time for hydrolysis was found to be 3 hr for cellulase purified from Avicel cultures and 4 hr for cellulase purified from cellobiose cultures. These loadings and incubation times allowed for more than 85% activity recovery.  相似文献   

3.
The strain of Penicillium janthinellum NCIM 1171 was subjected to mutation involving treatment of Ethyl Methyl Sulfonate (EMS) for 24h followed by UV-irradiation for 3min. Successive mutants showed enhanced cellulase production (EMS-UV-8), clearance zone on Avicel containing plate (SM2) and rapid growth on Walseth cellulose agar plates containing 0.2% 2-deoxy-d-glucose (SM3). These mutants were transferred to Walseth cellulose plates containing higher concentration (1.5%) of 2-deoxy-d-glucose (SM4) in which only five mutants showed clearance zone on SM4. All these mutants showed approximately two-fold increase in activity of both FPase and CMCase in shake flask culture when grown on basal medium containing CP-123 (1%) and wheat bran (2.5%). The enzyme preparations from these mutants were used to hydrolyze Avicel. Higher hydrolysis yields of Avicel were obtained with enzyme preparations of EU1. This is the first report on the isolation and selection of mutants based on hydrolysis of Avicel, which is the most crystalline substrate.  相似文献   

4.
Park EY  Naruse K  Kato T 《Bioresource technology》2011,102(10):6120-6127
Cellulase production in cultures of Acremonium cellulolyticus was significantly improved by using waste milk pack (MP) that had been pretreated with cellulase. When MP cellulose pretreated with cellulase (3 FPU/g MP) for 12 h was used as the sole carbon source for A. cellulolyticus culture in a 3-L fermentor, the cellulase activity was 16 FPU/ml. This was 25-fold higher (0.67 FPU/ml) compared with untreated MP cellulose and was comparable to that achieved with pure cellulose (Solka Floc). As the pretreatment progressed, roughness on the surface of untreated MP cellulose became to be smooth, but development of fissures on the surface of pretreated MP cellulose was observed. Cellulase pretreatment of MP increased both the accessibility of A. cellulolyticus to the surface and number of adsorption sites of cellulase on the surface of MP cellulose, leading to improved cellulase production in the A. cellulolyticus.  相似文献   

5.
A cellulase was purified from the culture supernatant of a strain of Penicillium sp. The purified enzyme was homogenous on polyacrylamide disc gel electrophoresis. It was a glycoprotein with a molecular weight of 52,000 estimated by gel filtration. The optimum pH was about 4.0 and the optimum temperature was 60°C. The enzyme was stable in the pH range of 3.0–10.0 at 6°C for 48 h and on heating at 60°C for 10 min. The activity of the enzyme toward Avicel was about 3 times higher than toward carboxymethyl cellulose. The enzyme showed a low activity for cotton, newspaper, filter paper and cellulose powder. The main product from Avicel was cellobiose, with a trace of glucose.  相似文献   

6.
Mutational experiments were performed to decrease the protease productivity of Humicola grisea var. thermoidea YH-78 using UV light and N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, no. 140, exhibited higher endoglucanase activity than the parent strain in mold bran culture at 50°C for 4 days. The culture extract rapidly disintegrated filter paper but produced a small amount of reducing sugar. About 30% of total endoglucanase activity in the extract was adsorbed onto Avicel. The electrophoretically homogeneous preparation of Avicel-adsorbable endoglucanase (molecular weight, 128,000) showed intensive filter-paper-disintegrating activity but did not release reducing sugar. The preparation also exhibited a highly synergistic effect with the cellulase preparation from Trichoderma reesei in the hydrolysis of microcrystalline cellulose. This endoglucanase was observed via scanning electron microscopy to disintegrate Avicel fibrils layer by layer from the surface, yielding thin sections with exposed chain ends. A mutant, no. 191, producing higher protease activity and an Avicel-unadsorbable, Avicel-nondisintegrating endoglucanase was isolated. The purified enzyme (molecular weight, 63,000) showed no disintegrating activity on filter paper and Avicel and a less synergistic effect with the T. reesei cellulase in hydrolyzing microcrystalline cellulose than did the former enzyme. Endoglucanase was therefore divided into two types, Avicel disintegrating and Avicel nondisintegrating.  相似文献   

7.
On-site cellulase and hemicellulase production is a promising way to reduce enzyme cost in the commercialization of the lignocellulose-to-ethanol process. A hemicellulase-producing fungal strain suitable for on-site enzyme production was selected from cultures prepared using wet disc-milling rice straw (WDM-RS) and identified as Trichoderma asperellum KIF125. KIF125 hemicellulase showed uniquely high abundance of β-xylosidase in the xylanolytic enzyme system compared to other fungal hemicellulase preparations. Supplementation of Talaromyces cellulolyticus cellulase with KIF125 hemicellulase was more effective than that with the hemicellulases from other fungal sources in reducing the total enzyme loading for the improvement of xylose yield in the hydrolysis of ball-milling RS, due to its high β-xylosidase dominance. β-Xylosidase in KIF125 hemicellulase was purified and classified as a glycosyl hydrolase family 3 enzyme with relatively high specificity for xylobiose. The production of KIF125 β-xylosidase in the fermentor was estimated as 118 U/g-WDM-RS (2350 U/L culture) at 48 h. These results demonstrate that KIF125 is promising as a practical hemicellulase source to combine with on-site cellulase production using T. cellulolyticus.  相似文献   

8.
A cellulase assay was developed for the continuous measurement of colored cellulose oligosaccharides (total carbohydrates) released during enzymatic hydrolysis of dyed crystal-line cellulose. Several cellulosic substrates were uniformly dyed by Remalzol brilliant blue R salt without altering their physical properties. Dyed Avicel (6.5%, w/w) was selected as the most representative substrate for the assay procedure. The assay was performed continuously in a simple, thermally controlled apparatus designed for filtration of the reaction mixture via a 5-μm-pore-size nylon filter to retain the crystalline dyed cellulose while spectrophotometrically monitoring the absorbance at 595 nm of the reaction filtrate. Crude supernatant cellulase of Trichoderma viride QM9414 was used to test the assay procedure. The activity of cellulase on dyed Avicel as measured by ΔA595nm correlated directly with the total carbohydrates formed. The initial reaction rate of cellulase solubilizing activity was readily determined with high sensitivity. The continuous assay has utility for the study of cellulase kinetics and for the comparison of activities from different microorganisms.  相似文献   

9.
Mutants of Penicillium janthinellum NCIM 1171 were evaluated for cellulase production using both submerged fermentation (SmF) and solid state fermentation (SSF). Mutant EU2D-21 gave highest yields of cellulases in both SmF and SSF. Hydrolysis of Avicel and cellulose were compared using SmF and SSF derived enzyme preparations obtained from EU2D-21. Surprisingly, the use of SSF derived preparation gave less hydrolysis compared to SmF derived enzymes. This may be due to inactivation of β-glucosidase at 50 °C in SSF derived enzyme preparations. SmF derived enzyme preparations contained both thermostable and thermosensitive β-glucosidases where as SSF derived enzyme preparations contained predominantly thermosensitive β-glucosidase. This is the first report on less thermostability of SSF derived β-glucosidase which is the main reason for getting less hydrolysis.  相似文献   

10.
Rohament P, a macerating enzyme preparation from Aspergillus alleaceus containing an endo-polygalacturonase as the major activity but also substantial amounts of cellulase(s), was purified by affinity chromatography on Avicel cellulose. Treating Rohament P with Avicel at different protein:cellulose ratios was more efficient in columns than in batch. An Avicel column, with an enzyme:substrate ratio of 1:80, retained 94% of cellulase from Rohament P in 60 min at 40–45°C, pH 4.4. Treated enzyme containing 6% residual cellulase, when incubated with fresh carrot rasps, released the maximum amount of cells with intact cell walls. Untreated enzyme did not macerate the carrot tissue but liquified under same conditions. Degradation of a washed carrot preparation by treated enzyme was 44% compared with 55% for the untreated enzyme. Gas chromatographic analysis of sugars revealed that treated Rohament P liberated less glucose and others sugars than did untreated enzyme. Enzyme visualization studies of treated and untreated Rohament P reflected a quantitative difference in protein bands in a pH gradient of 4–6 in miniature isoelectric focusing. Application of treated and untreated Rohament P to disks of carrot tissue led to ultrastructural changes. Untreated Rohament P dissolved the middle lamella and disintegrated the fibrillar material predominantly throughout the cell wall, resulting mainly in cell breakage. Treated Rohament P preferentially dissolved the middle lamellar region of the cell wall without touching the fibrillar part. This indicates that pectin is confined to the middle lamellar region.  相似文献   

11.
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorption of cellulase on Avicel, and of cellulase and xylanase on corn stover solids resulting from ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) pretreatments were measured at 4°C. Langmuir adsorption parameters were then estimated by non‐linear regression using Polymath software, and cellulase accessibility to cellulose was estimated based on adsorption data for pretreated solids and lignin left after carbohydrate digestion. To determine the impact of delignification and deacetylation on cellulose accessibility, purified CBHI (Cel7A) adsorption at 4°C and hydrolysis with whole cellulase were followed for untreated (UT) corn stover. In all cases, cellulase attained equilibrium in less than 2 h, and upon dilution, solids pretreated by controlled pH technology showed the greatest desorption followed by solids from dilute acid and SO2 pretreatments. Surprisingly, the lowest desorption was measured for Avicel glucan followed by solids from AFEX pretreatment. The higher cellulose accessibility for AFEX and lime pretreated solids could account for the good digestion reported in the literature for these approaches. Lime pretreated solids had the greatest xylanase capacity and AFEX solids the least, showing pretreatment pH did not seem to be controlling. The 24 h glucan hydrolysis rate data had a strong relationship to cellulase adsorption capacities, while 24 h xylan hydrolysis rate data showed no relationship to xylanase adsorption capacities. Furthermore, delignification greatly enhanced enzyme effectiveness but had a limited effect on cellulose accessibility. And because delignification enhanced release of xylose more than glucose, it appears that lignin did not directly control cellulose accessibility but restricted xylan accessibility which in turn controlled access to cellulose. Reducing the acetyl content in corn stover solids significantly improved both cellulose accessibility and enzyme effectiveness. Biotechnol. Bioeng. 2009;103: 252–267. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO2 wafers at 60 °C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (IC), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion.  相似文献   

13.
The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied. The cultures of the Penicillium strains were characterized by high cellulase and β-glucosidase as well moderate xylanase activities compared to the Trichoderma reesei reference strains QM 6a and RUTC30 (volumetric or per secreted protein, respectively). Comparison of the novel Penicillium and T. reesei secreted enzyme mixtures in the hydrolysis of (ligno)cellulose substrates showed that the F-2220 enzyme mixture gave higher yields in the hydrolysis of crystalline cellulose (Avicel) and similar yields in hydrolysis of pre-treated spruce and wheat straw than enzyme mixture secreted by the T. reesei reference strain. The sensitivity of the Penicillium cellulase complexes to softwood (spruce) and grass (wheat straw) lignins was lignin and temperature dependent: inhibition of cellulose hydrolysis in the presence of wheat straw lignin was minor at 35 °C while at 45 °C by spruce lignin a clear inhibition was observed. The two main proteins in the F-2220 (hemi)cellulase complex were partially purified and identified by peptide sequence similarity as glycosyl hydrolases (cellobiohydrolases) of families 7 and 6. Adsorption of the GH7 enzyme PpCBH1 on cellulose and lignins was studied showing that the lignin adsorption of the enzyme is temperature and pH dependent. The ppcbh1 coding sequence was obtained using PCR cloning and the translated amino acid sequence of PpCBH1 showed up to 82% amino acid sequence identity to known Penicillium cellobiohydrolases.  相似文献   

14.
The extracellular cellulase enzyme system of Clostridium A11 was fractionated by affinity chromatography on Avicel: 80% of the initial carboxymethylcellulase (CMCase) activity was adhered. This cellulase system was a multicomponent aggregate. Several CMCase activities were detected, but the major protein P1 had no detectable activity. Adhered and unadhered cellulases showed CMCase activity with the highest specific activity in Avicel-adhered fraction. However, only afhered fractions could degrade Avicel. Thus, efficiency of the enzymatic hydrolysis of Avicel was related to the cellulase-adhesion capacity. Carboxymethylcellulase and Avicelase activities were studied with the extracellular enzyme system and cloned cellulases. Genomic libraries from Clostridium A11 were constructed with DNA from this Clostridium, and a new gene cel1 was isolated. The gene(s) product(s) from cel1 exhibited CMCase and p-nitrophenylcellobiosidase (pNPCbase) activities. This cloned cellulase adhered to cellulose. Synergism between adhered enzyme system and cloned endoglucanases was observed on Avicel degradation. Conversely, no synergism was observed on CMC hydrolysis. Addition of cloned endoglucanase to cellulase complex led to increase of the Vmax without significant K m variation. Cloned endoglucanases can be added to cellulase complexes to efficiently hydrolyze cellulose.  相似文献   

15.
Thermomonospora fusca YX grown in the presence of cellulose produces a number of β-1-4-endoglucanases, some of which bind to microcrystalline cellulose. By using a multicopy plasmid, pIJ702, a gene coding for one of these enzymes (E2) was cloned into Streptomyces lividans and then mobilized into both Escherichia coli and Streptomyces albus. The gene was localized to a 1.6-kilobase PvuII-ClaI segment of the originally cloned 3.0-kilobase SstI fragment of Thermomonospora DNA. The culture supernatants of Streptomyces transformants contain a major endoglucanase that cross-reacts with antibody against Thermomonospora cellulase E2 and has the same molecular weight (43,000) as T. fusca E2. This protein binds quickly and tightly to Avicel, from which it can be eluted with guanidine hydrochloride but not with water. It also binds to filter paper but at a slower rate than to Avicel. Several large proteolytic degradation products of this enzyme generated in vivo lose the ability to bind to Avicel and have higher activity on carboxymethyl cellulose than the native enzyme. Other smaller products bind to Avicel but lack activity. A weak cellobiose-binding site not observed in the native enzyme was present in one of the degradation products. In E. coli, the cloned gene produced a cellulase that also binds tightly to Avicel but appeared to be slightly larger than T. fusca E2. The activity of intact E2 from all organisms can be inactivated by Hg2+ ions. Dithiothreitol protected against Hg2+ inactivation and reactivated both unbound and Avicel-bound Hg2+-inhibited E2, but at different rates.  相似文献   

16.
17.
Among 180 Streptomyces strains tested, 25 were capable of hydrolyzing microcrystalline cellulose (Avicel) at 30°C. Streptomyces reticuli was selected for further studies because of its ability to grow at between 30 and 50°C on Avicel. Enzymatic activities degrading Avicel, carboxymethyl cellulose, and cellobiose were found both in the culture supernatant and in association with the mycelium and crystalline substrate. The bound enzymes were efficiently solubilized by repeated washes with buffer of low ionic strength (50 mM Tris hydrochloride [pH 7.5]) and further purified by fast protein liquid chromatography. A high-molecular-weight Avicelase of >300 kilodaltons could be separated from carboxymethyl cellulase (CMCase) and β-glucosidase activities (molecular mass, 40 to 50 kilodaltons) by gel filtration on Superose 12. The CMCase fraction was resolved by Mono Q anion-exchange chromatography into two enzymes designated CMCase 1 and CMCase 2. The β-glucosidase activity was found to copurify with CMCase 2. The purified cellulase components showed optimal activity at around pH 7.0 and temperatures of between 45 and 50°C. Avicelase (but not CMCase) activity was stimulated significantly by the addition of CaCl2.  相似文献   

18.
《Carbohydrate research》1986,148(2):331-344
Cellobiohydrolase II, isolated from the extracellular cellulase system of Penicillium pinophilum by chromatography on DEAE-Sephadex and DEAE-Sepharose followed by chromatofocusing, gave a single homogeneous band in SDS-gel electrophoresis and gel electrophoresis and gel electrofocusing. It had a molecular weight of 50,700 and of pI of 5.0, and was associated with 19% of carbohydrate. Cellobiose was the sole product of hydrolysis of the cellulosic materials, Avicel and H3PO4-swollen cellulose. No cross reaction was observed with antiserum prepared with another purified cellobiohydrolase (I) isolated from the same cellulase system. Cellobiohydrolase II showed no capacity for producing short fibres from filter paper. Avicel was hydrolysed extensively, but little or no hydrolysis of cotton fibre was apparent. However, cotton fibre was hydrolysed with a reconstituted mixture of the purified cellobiohydrolase II and the four major endo-(1→4)-β-d-glucanases isolated during fractionation. The action of cellobiohydrolase II on H3PO4-swollen cellulose was stimulated by high concentrations of cellobiose, but inhibited by high concentrations of d-glucose. Other notable inhibitors were Mn2+ and carbodi-imide. The properties of cellobiohydrolase II and the immunologically unrelated cellobiohydrolase I are compared.  相似文献   

19.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

20.
In this study, the abilities to produce enzymes by four Acremonium cellulolyticus strains were analyzed. Saccharification of potato pulp was performed to investigate the effects of the enzymes produced by A. cellulolyticus and to confirm the possibility of using A. cellulolyticus in the saccharification of potato pulp. Amylase, pectinase, galactosidase, and cellulase were produced by A. cellulolyticus from several carbon sources. Potato pulp was found to be a suitable substrate for A. cellulolyticus growth. The addition of cellulose not only improved the activity of cellulase but also improved the activity of α-galactosidase. Lactose and galactose induced the production of β-galactosidase and pectinase. Four strains of A. cellulolyticus were cultured in potato pulp to evaluate their abilities to produce cellulase, amylase, pectinase and galactosidase. Among them, A. cellulolyticus strain CF-2612 exhibited the highest production of all the enzymes. By using the crude enzymes from A. cellulolyticus strain CF-2612, 86% yield for glucose and 94% yield for galactose were achieved after 80 h of saccharification of potato pulp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号