首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treatment of primary rat hepatocytes or tranfected HepG2 cells with the alpha(1B)-adrenergic receptor (alpha(1B)AR) agonist phenylephrine (PE) significantly inhibited interleukin 6 (IL-6)-induced STAT3 binding, tyrosine phosphorylation, and IL-6-induced serum amyloid A mRNA expression. Western analyses and in vitro kinase assays indicate that this inhibition is not due to either down-regulation of STAT3 protein expression nor inactivation of upstream-located JAK1 and JAK2. Blocking the new RNA and protein syntheses antagonized the inhibitory effect of PE on IL-6-activated STAT3, suggesting synthesis of an inhibitory factor(s) is involved. The inhibitory effect of PE on IL-6 activation of STAT3 was also abolished by the tyrosine phosphatase inhibitor sodium vanadate, indicating involvement of protein tyrosine phosphatases. Furthermore, preincubation of the cells with the specific MEK1 inhibitor PD98059 or a dominant negative MEK1 reversed the inhibitory effect of PE, and expression of constitutively activated MEK1 alone abolished IL-6-activated STAT3. Taken together, these data indicate that PE inhibits IL-6 activation of STAT3 in hepatic cells by a p42/44 mitogen-activated protein kinase-dependent mechanism, and tyrosine phosphatases are involved. This inhibitory cross-talk between the alpha(1B)AR and IL-6 signaling pathways implicates the alpha(1B)AR involvement in regulating the IL-6-mediated inflammatory responses.  相似文献   

3.
4.
5.
6.
7.
8.
IL-12 and IL-2 can stimulate mitogen- or CD3-activated T cells to proliferate, produce IFN-gamma, and kill tumor cells. The magnitude of these functional responses is greatly augmented when T cells are activated by the combination of IL-12 and IL-2. Although peripheral blood T cells are largely unresponsive to these cytokines without prior activation, a small subset of CD8+ T cells (CD8+CD18bright) is strongly activated by the combination of IL-12 and IL-2. In this report we show that the functional synergy between IL-12 and IL-2 in CD8+CD18bright T cells correlates with the activation of the stress kinases, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/Jun N-terminal kinase, but not with the activation of the extracellular signal-regulated kinases. The functional synergy between IL-2 and IL-12 is also associated with a prominent increase in STAT1 and STAT3 serine phosphorylation over that observed with IL-12 or IL-2 alone. By contrast, STAT tyrosine phosphorylation is not augmented over that seen with either cytokine alone. A specific inhibitor of p38 MAP kinase completely inhibits the serine phosphorylation of STAT1 and STAT3 induced by IL-12 and IL-2 and abrogates the functional synergy between IL-12 and IL-2 without affecting STAT tyrosine phosphorylation. This suggests that p38 MAP kinase may play an important role in regulating STAT serine phosphorylation in response to the combination of IL-12 and IL-2. Furthermore, these findings indicate that the optimal activation of T cells by IL-12 and IL-2 may depend on an interaction between the p38 MAP kinase and Janus kinase/STAT signaling pathways.  相似文献   

9.
10.
11.
12.
13.
Members of the interleukin-6 (IL-6) family of cytokines exert their biological effects via binding to their cognate ligand-binding receptor subunit on a target cell. The subsequent recruitment of the common signal transducer glycoprotein 130 and activation of the JAK/STAT and SHP-2/Ras/mitogen-activated protein kinase (MAPK) pathways are responsible for the majority of cellular responses elicited by IL-6 cytokines. Several types of experiments suggest that the Src family of kinases (SFK) also participates in IL-6 family cytokine-mediated signaling events. SYF cells, which lack expression of SFKs Src, Yes, and Fyn, were used to determine the role of SFKs in IL-6 family cytokine signaling and gene induction. SYF and wild type (WT) control fibroblasts displayed similar activation of signaling intermediates following stimulation with leukemia inhibitory factor (LIF). LIF-stimulated tyrosine phosphorylation of SHP-2 and subsequent activation of MAPK in SYF cells were identical to that seen in LIF-stimulated WT cells. Both LIF-stimulated tyrosine phosphorylation of STAT1 and STAT3, as well as LIF-stimulated DNA binding activity of STAT-containing nuclear complexes were indistinguishable when compared in SYF and WT cells. In addition, the phosphatidylinositol 3-kinase-sensitive Akt kinase and p38 MAPK were activated by LIF in both SYF and WT cells. Furthermore, LIF-stimulated expression of c-fos, egr-1, and suppressor of cytokine signaling-3 was retained in SYF cells. The IL-6 family cytokine oncostatin M was also capable of activating MAPK, STAT3, STAT1, Akt, and p38 in both WT and SYF cells. These results demonstrate that IL-6 family cytokines can activate a full repertoire of signaling pathways and induce gene expression independent of SFKs.  相似文献   

14.
15.
16.
Interleukin-6 (IL-6) initiates STAT3 signaling in plasma membrane rafts with the subsequent transit of Tyr-phosphorylated STAT3 (PY-STAT3) through the cytoplasmic compartment to the nucleus in association with accessory proteins. We initially identified caveolin-1 (cav-1) as a candidate STAT3-associated accessory protein due to its co-localization with STAT3 and PY-STAT3 in flotation raft fractions, and heat shock protein 90 (HSP90) due to its inclusion in cytosolic STAT3-containing 200-400-kDa complexes. Subsequent immunomagnetic bead pullout assays showed that STAT3, PY-STAT3, cav-1, and HSP90 interacted in plasma membrane and cytoplasmic complexes derived from uninduced and stimulated Hep3B cells. This was a general property of STAT3 in that these interactions were also observed in alveolar epithelial type II-like cells, lung fibroblasts, and pulmonary arterial endothelial cells. Exposure of Hep3B cells to the raft disrupter methyl-beta-cyclodextrin for 1-10 min followed by IL-6 stimulation for 15 min preferentially inhibited the appearance of PY-STAT3 in the cav-1-enriched sedimentable cytoplasmic fraction, suggesting that these complexes may represent a trafficking intermediate immediately downstream from the raft. Because IL-6 is known to function in the body in the context of fever, the possibility that HSP90 may help preserve IL-6-induced STAT3 signaling at elevated temperature was investigated. Geldanamycin, an HSP90 inhibitor, markedly inhibited IL-6-stimulated STAT3 signaling in Hep3B hepatocytes cultured overnight at 39.5 degrees C as evaluated by DNA-shift assays, trafficking of PY-STAT3 to the nucleus, cross-precipitation of HSP90 by anti-STAT3 polyclonal antibody, and reporter/luciferase construct experiments. Taken together, the data show that IL-6/raft/STAT3 signaling is a chaperoned pathway that involves cav-1 and HSP90 as accessory proteins and suggest a mechanism for the preservation of this signaling during fever.  相似文献   

17.
Insulin stimulates the tyrosine phosphorylation of caveolin   总被引:15,自引:2,他引:13       下载免费PDF全文
《The Journal of cell biology》1995,129(6):1523-1531
The specialized plasma membrane structures termed caveolae and the caveolar-coat protein caveolin are highly expressed in insulin- sensitive cells such as adipocytes and muscle. Stimulation of 3T3-L1 adipocytes with insulin significantly increased the tyrosine phosphorylation of caveolin and a 29-kD caveolin-associated protein in caveolin-enriched Triton-insoluble complexes. Maximal phosphorylation occurred within 5 min, and the levels of phosphorylation remained elevated for at least 30 min. The insulin-dose responses for the tyrosine phosphorylation of caveolin and the 29-kD caveolin-associated protein paralleled those for the phosphorylation of the insulin receptor. The stimulation of caveolin tyrosine phosphorylation was specific for insulin and was not observed with PDGF or EGF, although PDGF stimulated the tyrosine phosphorylation of the 29-kD caveolin- associated protein. Increased tyrosine phosphorylation of caveolin, its associated 29-kD protein, and a 60-kD protein was observed in an in vitro kinase assay after incubation of the caveolin-enriched Triton- insoluble complexes with Mg-ATP, suggesting the presence of an intrinsic tyrosine kinase in these complexes. These fractions contain only trace amounts of the activated insulin receptor. In addition, these complexes contain a 60-kD kinase detected in an in situ gel kinase assay and an approximately 60 kD protein that cross-reacts with an antibody against the Src-family kinase p59Fyn. Thus, the insulin- dependent tyrosine phosphorylation of caveolin represents a novel, insulin-specific signal transduction pathway that may involve activation of a tyrosine kinase downstream of the insulin receptor.  相似文献   

18.
Recent studies have shown that polyunsaturated fatty acids (PUFA) regulated the functions of membrane receptors in T cells and suppressed T cell-mediated immune responses. But the molecular mechanisms of immune regulation are not yet elucidated. Lipid rafts are plasma membrane microdomains, in which many receptors localized. The purpose of this study was to investigate the effect of DHA on IL-2R signaling pathway in lipid rafts. We isolated lipid rafts by discontinuous sucrose density gradient ultracentrifugation, and found that DHA could change the composition of lipid rafts and alter the distribution of key molecules of IL-2R signaling pathway, which transferred from lipid rafts to detergent-soluble membrane fractions. These results revealed that DHA treatment increased the proportion of polyunsaturated fatty acids especially n−3 polyunsaturated fatty acids in lipid rafts and changed the lipid environment of membrane microdomains in T cells. Compared with controls, DHA changed the localization of IL-2R, STAT5a and STAT5b in lipid rafts and suppressed the expression of JAK1, JAK3 and tyrosine phosphotyrosine in soluble membrane fractions. Summarily, this study concluded the effects of DHA on IL-2R signaling pathway in lipid rafts and explained the regulation of PUFAs in T cell-mediated immune responses.  相似文献   

19.
PUFAs have been shown to mediate immune re-sponse especially the functions of T cells[1]. Recent researches have demonstrated that PUFAs can in-crease membrane fluidity and modify the functions of membrane receptors and enzymes in T cell membra-ne[2,3]. M…  相似文献   

20.
The tyrosine phosphatase Src homology 2-containing phosphatase 1 (SHP-1) is a key negative regulator of TCR-mediated signaling. Previous studies have shown that in T cells a fraction of SHP-1 constitutively localizes to membrane microdomains, commonly referred to as lipid rafts. Although this localization of SHP-1 is required for its functional regulation of T cell activation events, how SHP-1 is targeted to the lipid rafts was unclear. In this study, we identify a novel, six-amino acid, lipid raft-targeting motif within the C terminus of SHP-1 based on several biochemical and functional observations. First, mutations of this motif in the context of full-length SHP-1 result in the loss of lipid raft localization of SHP-1. Second, this motif alone restores raft localization when fused to a mutant of SHP-1 (SHP-1 DeltaC) that fails to localize to rafts. Third, a peptide encompassing the 6-mer motif directly binds to phospholipids whereas a mutation of this motif abolishes lipid binding. Fourth, whereas full-length SHP-1 potently inhibits TCR-induced tyrosine phosphorylation of specific proteins, expression of a SHP-1-carrying mutation within the 6-mer motif does not. Additionally, although SHP-1 DeltaC was functionally inactive, the addition of the 6-mer motif restored its functionality in inhibiting TCR-induced tyrosine phosphorylation. Finally, this 6-mer mediated targeting of SHP-1 lipid rafts was essential for the function of this phosphatase in regulating IL-2 production downstream of TCR. Taken together, these data define a novel 6-mer motif within SHP-1 that is necessary and sufficient for lipid raft localization and for the function of SHP-1 as a negative regulator of TCR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号