首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Toxoplasma gondii belongs to the phylum Apicomplexa, a group of obligate intracellular parasites that rely on gliding motility to enter host cells. Drugs interfering with the actin cytoskeleton block parasite motility, host cell invasion, and egress from infected cells. Myosin A, profilin, formin 1, formin 2, and actin-depolymerizing factor have all been implicated in parasite motility, yet little is known regarding the importance of actin polymerization and other myosins for the remaining steps of the parasite lytic cycle. Here we establish that T. gondii formin 3 (TgFRM3), a newly described formin homology 2 domain (FH2)-containing protein, binds to Toxoplasma actin and nucleates rabbit actin assembly in vitro. TgFRM3 expressed as a transgene exhibits a patchy localization at several distinct structures within the parasite. Disruption of the TgFRM3 gene by double homologous recombination in a ku80-ko strain reveals no vital function for tachyzoite propagation in vitro, which is consistent with its weak level of expression in this life stage. Conditional stabilization of truncated forms of TgFRM3 suggests that different regions of the molecule contribute to distinct localizations. Moreover, expression of TgFRM3 lacking the C-terminal domain severely affects parasite growth and replication. This work provides a first insight into how this specialized formin, restricted to the group of coccidia, completes its actin-nucleating activity.  相似文献   

2.
3.
Toxoplasma gondii is an important food-borne parasite transmitted primarily from animals to humans through meat consumption, mainly pork and lamb, as well as through oocysts shed by cats. Infection in humans can cause severe neonatal malformations, ocular complications or encephalitis. Toxoplasmosis infection during pregnancy, especially in sheep, often results in abortion, representing considerable economic loss. The aim of this study was to investigate whether Toxoplasma gondii pooled excreted-secreted antigens (ESA), recovered from infected culture supernatants with tachyzoites used as immunogen, can protect experimental mice against T. gondii infection. For immunization experiments, we evaluated A/Sn inbred mice, a novel susceptible mouse model for T. gondii and a virulent strain (RH) for challenge experiments. The antigen selection was based on those produced by tachyzoites since they are responsible for disseminating the infection as well as stimulating the humoral and cellular immune responses. ESA were recovered from VERO cell-culture supernatants infected with virulent RH strain tachyzoites harvested after 48 h. Groups of 5 female mice were intraperitoneally (i.p.) immunized with 4 doses at 2 week intervals with 20 μg of ESA adsorbed to 0.5 mg of alum. The control group received only the adjuvant in PBS on the same dates. Pooled serum collected from chronically infected mice was used as positive control. Blood samples were collected from tail veins 14 days after each immunization. Antibody was detected using ELISA, indirect immunofluorescence and immunoblotting. Anti-ESA antibodies were also evaluated by agglutination, complement-mediated lysis and antibody-mediated cellular toxicity. Fifteen days after the last immunization, both groups were challenged (i.p.) with 1 × 103 RH strain tachyzoites. The parasitemia was evaluated by PCR, and survival was followed daily. The results showed an increase of antibody levels after each immunization. Anti-ESA antibodies also reacted with a crude tachyzoite antigen and bonded on the parasite surface, with particularly high intensity at the apical region. Anti-ESA antibodies were also able to agglutinate and kill tachyzoites in vitro through interactions with complement and cellular pathways. Even though the tachyzoite challenge was lethal to the mice, PCR results suggested that immunized mice had lower parasitemia as well as longer survival (72 h) than mice from the control group.  相似文献   

4.
Chen Z  Harb OS  Roos DS 《PloS one》2008,3(10):e3611
Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules) to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions.  相似文献   

5.
6.
Pre-mRNP complexes were isolated from rat liver nuclei as 40S hnRNP particles, and actin-binding proteins were collected by DNase I affinity chromatography. The bound proteins were analyzed by 2D gel electrophoresis, and the following five hnRNP A/B-type proteins were identified by tandem mass spectrometry: DBP40/CBF-A (CArG binding factor A), a minor hnRNP A2 variant and three minor hnRNP A3 (mBx) variants. DBP40 was chosen for further analysis of the association of actin with the pre-mRNP complex. It was shown in vitro that purified actin binds to recombinant DBP40 suggesting that the interaction between actin and DBP40 is direct in the pre-mRNP particles. The association of actin with DBP40 was further explored in vivo. It was shown in a transfection study that DBP40 appears both in the nucleus and cytoplasm. Microinjection experiments revealed that DBP40 is exported from the nucleus to the cytoplasm. Finally, RNA–protein and protein–protein cross-linking experiments showed that DBP40 interacts with poly(A)+ RNA as well as actin, both in the nucleus and cytoplasm. We propose that actin associated with DBP40, and perhaps with additional hnRNP A/B-type proteins, is transferred from nucleus to cytoplasm bound to mRNA.  相似文献   

7.
Transgenic tobacco deficient in either Cat1 (Cat1AS), Cat2 (Cat2AS), or both (CatGH) was generated through sense and antisense technology. Cat1AS, Cat2AS, and CatGH plants showed no visible phenotype when grown at low light (100 µmol m−2 sec−1. Under these conditions, deficiency in Cat1 and/or Cat2 did not lead to constitutive pathogenesis-related (PR-1) expression and did not potentiate PR-1 induction by exogenous salicylic acid. This demonstrates that catalase suppression per se is not a sufficient signal for PR-1 induction. In Cat1-deficient plants exposed to higher light intensities (250–1000 µmol m−2 sec−1), PR-1 expression was induced without pathogenic challenge and multiplication of Pseudomonas syringae pv. syringae was repressed. Yet, it is unlikely that Cat1 deficiency is mimicking the mode of action of salicylic acid in tobacco, because, concurrent with PR-1 induction, Cat1 deficiency at high light provoked severe leaf damage, characterized by white necrotic lesions. Taken together, these results do not support the model that catalase inactivation is the key route by which salicylic acid induces PR defense responses in healthy tissue. However, because catalase deficiency is potentially lethal to leaves, catalase inactivation by salicylic acid could be of importance in the establishment of hypersensitive responses.  相似文献   

8.
The mouse-virulent RH strain of Toxoplasma gondii is generally considered to have lost its cyst-forming capacity, and conversion of RH tachyzoites into cysts in non-immune mice has previously been shown exclusively following early treatment with sulfadiazine (SDZ). We here describe the development of tissue cysts in mice infected with RH strain parasites and treated with atovaquone (ATO) combined with pyrrolidine dithiocarbamate (PDTC). Groups of Swiss-Webster mice infected intraperitoneally (i.p.) with 10(2) RH tachyzoites were treated with 5, 25 and 100 mg of ATO/kg per day alone or combined with PDTC at 250 mg/kg per day from day 1 postinfection (p.i.) for 14 days. A total of 19 mice survived the 6-week observation period. Of these, brain cysts were recovered in nine (47%), with burdens ranging from 50 to 3120 (mean +/- S.D. = 622 +/- 963). All cyst-harboring mice had high specific IgG antibody levels (1:10,240-1:40,960, corresponding to 500-2000 IU/ml), as did one mouse in which cysts were not demonstrated, which was therefore included in the group of mice with residual infection. Bioassay performed to test the infectivity of these cysts produced acute lethal toxoplasmosis following i.p. inoculation in all instances (100%), and importantly, following peroral inoculation in four (29%). The recovered tachyzoites were highly infectious. In addition, significantly elevated interferon gamma (IFN-gamma) in the treated mice which developed residual infection compared with any group of infection-free (treated or subinoculated) mice, indicates immunological control of the parasite in the latent form. In conclusion, early treatment of mice infected with T. gondii RH tachyzoites with ATO and PDTC induces conversion into tissue cysts, thus providing a new model for studying the mechanism(s) of T. gondii stage conversion.  相似文献   

9.
Dynamin‐related proteins (Drps) are involved in diverse processes such as organelle division and vesicle trafficking. The intracellular parasite Toxoplasma gondii possesses three distinct Drps. TgDrpC, whose function remains unresolved, is unusual in that it lacks a conserved GTPase Effector Domain, which is typically required for function. Here, we show that TgDrpC localizes to cytoplasmic puncta; however, in dividing parasites, TgDrpC redistributes to the growing edge of the daughter cells. By conditional knockdown, we determined that loss of TgDrpC stalls division and leads to rapid deterioration of multiple organelles and the IMC. We also show that TgDrpC interacts with proteins that exhibit homology to those involved in vesicle transport, including members of the adaptor complex 2. Two of these proteins, a homolog of the adaptor protein 2 (AP‐2) complex subunit alpha‐1 and a homolog of the ezrin–radixin–moesin (ERM) family proteins, localize to puncta and associate with the daughter cells. Consistent with the association with vesicle transport proteins, re‐distribution of TgDrpC to the IMC during division is dependent on post‐Golgi trafficking. Together, these results support that TgDrpC contributes to vesicle trafficking and is critical for stability of parasite organelles and division.  相似文献   

10.
11.
Intracellular microbes have evolved efficient strategies for transitioning from one cell to another in a process termed intercellular transmission. Here we show that host cell transmission of the obligate intracellular parasite Toxoplasma gondii is closely tied to specific cell cycle distributions, with egress and reinvasion occurring most proficiently by parasites in the G1 phase. We also reveal that Toxoplasma undergoes marked changes in mRNA expression when transitioning from the extracellular environment to its intracellular niche. These mRNA level changes reflect a modal switch from expression of proteins involved in invasion, motility and signal transduction in extracellular parasites to expression of metabolic and DNA replication proteins in intracellular parasites. Host cell binding and signalling associated with the discharge of parasite secretory proteins was not sufficient to induce this switch in gene expression, suggesting that the regulatory mechanisms responsible are tied to the establishment of the intracellular environment. The genes whose expression increased after parasite invasion belong to a progressive cascade known to underlie the parasite division cycle indicating that the unique relationship between the G1 phase and invasion effectively synchronizes short-term population growth. This work provides new insight into how this highly successful parasite competently transits from cell to cell.  相似文献   

12.
Targeted gene disruption or overexpression of 12/15-lipoxygenase in mice on the genetic background of apolipoprotein E or low density lipoprotein-receptor (LDL-R) deficiency has implicated 12/15-lipoxygenase in atherogenesis. The data support indirectly a role for 12/15-lipoxygenase in the oxidative modification of low density lipoprotein. In this study we set out to explore other potential mechanisms for 12/15-lipoxygenase in atherosclerosis using apolipoprotein B mRNA editing catalytic polypeptide-1/LDL-R double-deficient mice, a model highly related to the human condition of familial hypercholesterolemia. 12/15-Lipoxygenase deficiency in this strain led to approximately 50% decrease in aortic lesions in male and female mice at 8 months on a chow diet in the absence of cholesterol differences. While studying 12/15-lipoxygenase-deficient macrophages in culture, we discovered a remarkable selective defect (75-90% decrease) in interleukin-12 production but not in tumor necrosis factor-alpha or nitric oxide release, in response to lipopolysaccharide in the presence or absence of interferon-gamma priming. The lipopolysaccharide/interferon-gamma response was associated with a 33-50% decrease in nuclear interferon consensus sequence-binding protein, which is consistent with interferon consensus sequence-binding protein containing protein complex-dependent regulation of the interleukin-12 p40 gene. The decrease in interleukin-12 production was recapitulated in vivo in mouse aortas of the triple knockout group and was reflected in a marked decrease in interferon-gamma expression. The data provide support for a novel mechanism linking the 12/15-lipoxygenase pathway to a known immunomodulatory Th1 cytokine in atherogenesis.  相似文献   

13.
Toxoplasma gondii, the agent causing toxoplasmosis, is an obligate intracellular protozoan parasite. A calcium signal appears to be essential for intracellular transduction during the active process of host cell invasion. We have looked for a Ca2+-transport ATPase in tachyzoites and found Ca2+-ATPase activity (11-22 nmol Pi liberated/mg protein/min) in the tachyzoite membrane fraction. This ATP-dependent activity was stimulated by Ca2+ and Mg2+ ions and by calmodulin, and was inhibited by pump inhibitors (sodium orthovanadate or thapsigargin). We used cytochemistry and X-ray microanalysis of cerium phosphate precipitates and immunolabelling to find the Ca2+, Mg2+-ATPase. It was located mainly in the membrane complex, the conoid, nucleus, secretory organelles (rhoptries, dense granules) and in vesicles with a high calcium concentration. Thus, Toxoplasma gondii possesses Ca2+-pump ATPase (Ca2+, Mg2+-ATPase) as do eukaryotic cells.  相似文献   

14.
Background information. Toxoplasma gondii is among the most successful parasites, with nearly half of the human population chronically infected. T. gondii has five sHsps [small Hsps (heat‐shock proteins)] located in different subcellular compartments. Among them, Hsp20 showed to be localized at the periphery of the parasite body. sHsps are widespread, constituting the most poorly conserved family of molecular chaperones. The presence of sHsps in membrane structures is unusual. Results. The localization of Hsp20 was further analysed using high‐resolution fluorescent light microscopy as well as electron microscopy, which revealed that Hsp20 is associated with the outer surface of the IMC (inner membrane complex), in a set of discontinuous stripes following the same spiralling trajectories as the subpellicular microtubules. The detergent extraction profile of Hsp20 was similar to that of GAP45 [45 kDa GAP (gliding‐associated protein)], a glideosome protein associated with the IMC, but was different from that of IMC1 protein. Although we were unable to detect interacting protein partners of Hsp20 either in normal or stressed tachyzoites, an interaction of Hsp20 with phosphatidylinositol 4‐phosphate and phosphatidylinositol 4,5‐bisphosphate phospholipids could be observed. Conclusions. Hsp20 was shown to be associated with a specialized membranous structure of the parasite, the IMC. This discontinuous striped‐arrangement is unique in T. gondii, indicating that the topology of the outer leaflet of the IMC is not homogeneous.  相似文献   

15.
16.
17.
18.
Black Point in wheat is a dark discoloration at the embryo end of the grain, which causes substantial financial losses to wheat growers due to down-grading of otherwise high-grade wheat. There does not appear to be a single cause for Black Point, although evidence suggests that fungal infection is the main link to Black Point symptoms. We sought to identify grain proteins from Black Point-affected and Black Point-free wheat cultivar SUN239V, which is known to be very susceptible to Black Point. The proteomes of both the germ and endosperm-bran components of Black Point-affected and Black Point-free grain were compared using two-dimensional gel electrophoresis (2-DE) with six replicate gels run for each protein sample. Approximately 1478 discrete protein spots were found in 2-DE gels from the germ fraction of the grain, of which 354 were identified by mass spectrometry (MS). Similarly, 1360 discrete protein spots were found from the endosperm-bran fraction, of which 303 were identified by MS. No proteins of fungal or bacterial origin were positively identified, suggesting that, at least in some cases, Black Point is not associated with microbial activity. Of the germ proteins, 252 were differentially expressed in Black Point-affected tissue, with 67 of these proteins identified by MS. Of the endosperm-bran proteins, 317 were differentially expressed in Black Point-affected tissue, with 86 identified. The largest of 12 functional classes to which the differentially abundant proteins were assigned was the 'stress' class, i.e. products of genes associated with stress, disease and defence. Higher levels of these proteins were found in Black Point-free grain, suggesting that protection from the disease might be afforded by increased levels of the 'stress' proteins.  相似文献   

19.

Background

Chromosome ends are composed of telomeric repeats and subtelomeric regions, which are patchworks of genes interspersed with repeated elements. Although chromosome ends display similar arrangements in different species, their sequences are highly divergent. In addition, these regions display a particular nucleosomal composition and bind specific factors, therefore producing a special kind of heterochromatin. Using data from currently available draft genomes we have characterized these putative Telomeric Associated Sequences in Toxoplasma gondii.

Results

An all-vs-all pairwise comparison of T. gondii assembled chromosomes revealed the presence of conserved regions of ∼ 30 Kb located near the ends of 9 of the 14 chromosomes of the genome of the ME49 strain. Sequence similarity among these regions is ∼ 70%, and they are also highly conserved in the GT1 and VEG strains. However, they are unique to Toxoplasma with no detectable similarity in other Apicomplexan parasites. The internal structure of these sequences consists of 3 repetitive regions separated by high-complexity sequences without annotated genes, except for a gene from the Toxoplasma Specific Family. ChIP-qPCR experiments showed that nucleosomes associated to these sequences are enriched in histone H4 monomethylated at K20 (H4K20me1), and the histone variant H2A.X, suggesting that they are silenced sequences (heterochromatin). A detailed characterization of the base composition of these sequences, led us to identify a strong long-range compositional bias, which was similar to that observed in other genomic silenced fragments such as those containing centromeric sequences, and was negatively correlated to gene density.

Conclusions

We identified and characterized a region present in most Toxoplasma assembled chromosomes. Based on their location, sequence features, and nucleosomal markers we propose that these might be part of subtelomeric regions of T. gondii. The identified regions display a unique trinucleotide compositional bias, which is shared (despite the lack of any detectable sequence similarity) with other silenced sequences, such as those making up the chromosome centromeres. We also identified other genomic regions with this compositional bias (but no detectable sequence similarity) that might be functionally similar.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-21) contains supplementary material, which is available to authorized users.  相似文献   

20.
A number of morphological, physiological and phenological traits have been suggested as significant markers of adaptation to drought in bread wheat (Triticum aestivum L.). This study was aimed at the identification of a relationship between dehydroascorbate reductase (DHAR, EC 1.8.5.1) and catalase (CAT, EC 1.11.1.6) activities in leaves of wheat plants and stability of yield components under water deficit. The single chromosome substitution lines of cv. Chinese Spring carrying separate chromosomes from the donor Synthetic 6x, an artificial hexaploid combining the genomes of the two wild species, Triticum dicoccoides (AABB) and Aegilops tauschii (DD), were the objects of the investigations. The activities of the DHAR and CAT were correlated with flag leaf relative water content and two indexes of stability of grain yield components under drought across the set substitution lines. The lines carrying a synthetic hexaploid homologous pair of chromosomes 1B, 1D, 2D, 3D or 4D all expressed a low constitutive level of DHAR and the lines carrying chromosomes 3B, 1D, 2D and 3D a low constitutive level of CAT. All were able to increase this level (by fourfold for DHAR and by 1.5-fold for CAT) in response to stress caused by water deficit. When challenged by drought stress, these lines tended to be the most effective in retaining the water status of the leaves and preventing the grain yield components from being compromised. The discovered genetic variability for enzymes activity in leaves of wheat might be a useful selection criterion for drought tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号