首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have followed the normal development of the different cell types associated with the Drosophila dorsal vessel, i.e. cardioblasts, pericardial cells, alary muscles, lymph gland and ring gland, by using several tissue-specific markers and transmission electron microscopy. Precursors of pericardial cells and cardioblasts split as two longitudinal rows of cells from the lateral mesoderm of segments T2-A7 (cardiogenic region) during stage 12. The lymph gland and dorsal part of the ring gland (corpus allatum) originate from clusters of lateral mesodermal cells located in T3 and T1/dorsal ridge, respectively. Cardioblast precursors are strictly segmentally organized; each of T2-A6 gives rise to six cardioblasts. While moving dorsally during the stages leading up to dorsal closure, cardioblast precursors become flattened, polarized cells aligned in a regular longitudinal row. At dorsal closure, the leading edges of the cardioblast precursors meet their contralateral counterparts. The lumen of the dorsal vessel is formed when the trailing edges of the cardioblast precursors of either side bend around and contact each other. The amnioserosa invaginates during dorsal closure and is transiently attached to the cardioblasts; however, it does not contribute to the cells associated with the dorsal vessel and degenerates during late embryogenesis. We describe ultrastructural characteristics of cardioblast differentiation and discuss similarities between cardioblast development and capillary differentiation in vertebrates. Correspondence to: V. Hartenstein  相似文献   

2.
The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is responsible for intracellular Ca2+ homeostasis. SERCA activity in muscle can be regulated by phospholamban (PLB), an affinity modulator, and sarcolipin (SLN), an uncoupler. Although PLB gets dislodged from Ca2+-bound SERCA, SLN continues to bind SERCA throughout its kinetic cycle and promotes uncoupling of Ca2+ transport from ATP hydrolysis. To determine the structural regions of SLN that mediate uncoupling of SERCA, we employed mutagenesis and generated chimeras of PLB and SLN. In this study we demonstrate that deletion of SLN N-terminal residues 2ERSTQ leads to loss of the uncoupling function even though the truncated peptide can target and constitutively bind SERCA. Furthermore, molecular dynamics simulations of SLN and SERCA interaction showed a rearrangement of SERCA residues that is altered when the SLN N terminus is deleted. Interestingly, transfer of the PLB cytosolic domain to the SLN transmembrane (TM) and luminal tail causes the chimeric protein to lose SLN-like function. Further introduction of the PLB TM region into this chimera resulted in conversion to full PLB-like function. We also found that swapping PLB N and C termini with those from SLN caused the resulting chimera to acquire SLN-like function. Swapping the C terminus alone was not sufficient for this conversion. These results suggest that domains can be switched between SLN and PLB without losing the ability to regulate SERCA activity; however, the resulting chimeras acquire functions different from the parent molecules. Importantly, our studies highlight that the N termini of SLN and PLB influence their respective unique functions.  相似文献   

3.
Chemical cross-linking was used to study protein binding interactions between native phospholamban (PLB) and SERCA2a in sarcoplasmic reticulum (SR) vesicles prepared from normal and failed human hearts. Lys27 of PLB was cross-linked to the Ca2+ pump at the cytoplasmic extension of M4 (at or near Lys328) with the homobifunctional cross-linker, disuccinimidyl glutarate (7.7 Å). Cross-linking was augmented by ATP but abolished by Ca2+ or thapsigargin, confirming in native SR vesicles that PLB binds preferentially to E2 (low Ca2+ affinity conformation of the Ca2+-ATPase) stabilized by ATP. To assess the functional effects of PLB binding on SERCA2a activity, the anti-PLB antibody, 2D12, was used to disrupt the physical interactions between PLB and SERCA2a in SR vesicles. We observed a tight correlation between 2D12-induced inhibition of PLB cross-linking to SERCA2a and 2D12 stimulation of Ca2+-ATPase activity and Ca2+ transport. The results suggest that the inhibitory effect of PLB on Ca2+-ATPase activity in SR vesicles results from mutually exclusive binding of PLB and Ca2+ to the Ca2+ pump, requiring PLB dissociation for catalytic activation. Importantly, the same result was obtained with SR vesicles prepared from normal and failed human hearts; therefore, we conclude that PLB binding interactions with the Ca2+ pump are largely unchanged in failing myocardium.  相似文献   

4.
The effect of palytoxin was studied in a microsomal fraction enriched in longitudinal tubules of the sarcoplasmic reticulum membrane. Half-maximal effect of palytoxin on Ca2+-ATPase activity yielded an apparent inhibition constant of approx. 0.4 μM. The inhibition process exhibited the following characteristics: (i) the degree of inhibition was dependent on membrane protein concentration; (ii) no protection was observed when the ATP concentration was raised; (iii) dependence on Ca2+ concentration with a decreased maximum catalytic rate; (iv) it occurred in the absence of Ca2+ ionophoric activity. Likewise, the inhibition mechanism was linked to: (i) rapid enzyme phosphorylation from ATP in the presence of Ca2+ but lower steady-state levels of phosphoenzyme; (ii) more drastic effect on phosphoenzyme levels when the toxin was added to the enzyme in the absence of Ca2+; (iii) decreased phosphoenzyme levels at saturating Ca2+ concentrations; (iv) no effect on kinetics of phosphoenzyme decomposition. The palytoxin effect is related with lock of the enzyme in the Ca2+-free conformation so that progression of the catalytic cycle is impeded.  相似文献   

5.
Of all the SERCA pumps, SERCA3 was the latest to be described and the least well known. Its primary structure deviates more than usual from the other members of the SERCA family. It is not known whether its remarkably low affinity for Ca2+ (K0.5 > 1M) observed upon expression in the COS cell system occurs also in its normal cellular context. SERCA3 is particularly expressed at high levels in different types of blood cells and related cells like platelets, lymphocytes, mast cells and arterial endothelial cells. It is also found in cerebellar Purkinje neurons. The physiological significance of this expression pattern remains unknown.  相似文献   

6.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

7.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

8.
The heart rate (HR) of Muscovy duck embryos (Cairina moschata f. domestica) was continuously recorded from as early as the 21st day of incubation (D21) until hatching (D34/35). The aim of the study was to investigate the influence of phonoperiods consisting of different acoustic stimuli on the course of HR and the development of HR periodicities during this period. Incubation was carried out at a constant temperature and in constant darkness. Until D25 HR was dominated by decelerative fluctuations only, indicating a main input from the parasympathetic system on the heart. Later sympathetic influences increased progressively. HR periodicity was investigated by means of chi 2-periodogram and fast Fourier transformation. Between D26 and D30 statistically significant and stable HR periodicities developed gradually. They had periods in the range from 5 to 38 h. Ultra-, circa- and infradian rhythms (< 20, 24 +/- 4 and > 28 h, respectively) occurred in parallel in some cases in the same embryo. The for the HR course important periods were dissimilar between individual embryos and had different intensities. There was no indication that acoustic stimulation (phonoperiods) had any effect on the development of HR periodicities.  相似文献   

9.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

10.
Sarco/endoplasmic reticulum Ca(2+)ATPases (SERCAs) pump free Ca(2+) from the cytosol into the endoplasmic reticulum. The human SERCA3 family counts six members named SERCA3a to 3f. However, the exact role of these different isoforms in cellular physiology remains undetermined. In this study, we compared some physiological consequences of SERCA3b and SERCA3f overexpression in HEK-293 cells. We observed that overexpression of SERCA3b affected cell adhesion capacity associated with a major disorganization of F-actin and a decrease in focal adhesion. Furthermore, we found that SERCA3f overexpression resulted in an increase in endoplasmic reticulum stress markers (including processing of X-box-binding protein-1 (XBP-1) mRNA and expression of chaperone glucose-regulated protein 78 (GRP78)). This was associated with the activation of caspase cascade and a higher spontaneous cell death. In conclusion, these data point for the first time to distinct physiological roles of SERCA3 isoforms in cell functions.  相似文献   

11.
Ca2+ uptake into the endoplasmic reticulum (ER) is mediated by Ca2+ ATPase isoforms, which are all selectively inhibited by nanomolar concentrations of thapsigargin. Using ATP/Mg2+-dependent 45Ca2+ transport in rat brain microsomes, tissue sections, and permeabilized cells, as well as Ca2+ imaging in living cells we distinguish two ER Ca2+ pools in the rat CNS. Nanomolar levels of thapsigargin blocked one component of brain microsomal 45Ca2+ transport, which we designate as the thapsigargin-sensitive pool (TG-S). The remaining component was only inhibited by micromolar thapsigargin, and thus designated as thapsigargin resistant (TG-R). Ca2+ ATPase and [32P]phosphoenzyme assays also distinguished activities with differential sensitivities to thapsigargin. The TG-R Ca2+ uptake displayed unique anion permeabilities, was inhibited by vanadate, but was unaffected by sulfhydryl reduction. Ca2+ sequestered into the TG-R pool could not be released by inositol-1,4,5-trisphosphate, caffeine, or cyclic ADP-ribose. The TG-R Ca2+ pool had a unique anatomical distribution in the brain, with selective enrichment in brainstem and spinal cord structures. Cell lines that expressed high levels of the TG-R pool required micromolar concentrations of thapsigargin to effectively raise cytoplasmic Ca2+ levels. TG-R Ca2+ accumulation represents a distinct Ca2+ buffering pool in specific CNS regions with unique pharmacological sensitivities and anatomical distributions.  相似文献   

12.
The conformational states of Ca2+-ATPase in sarcoplasmic reticulum (SR) vesicles with or without a thousand-fold transmembrane Ca2+ gradient have been studied by fluorescence spectroscopy and fluorescence quenching. In consequence of the establishment of the transmembrane Ca2+ gradient, the steady-state fluorescence results revealed a reproducible 8% decrease in the intrinsic fluorescence while time-resolved fluorescence measurements showed that 13 tryptophan residues in SR · Ca2+-ATPase could be divided into three groups. The fluorescence lifetime of one of these groups increased from 5.5 ns to 5.95 ns in the presence of a Ca2+ gradient. Using KI and hypocrellin B (a photosensitive pigment obtained from a parasitic fungus, growing in Yunnan, China), the fluorescence quenching further indicated that the dynamic change of this tryptophan group, located at the protein-lipid interface, is a characteristic of transmembrane Ca2+ gradient-mediated conformational changes in SR · Ca2+-ATPase.Abbreviations SR sarcoplasmic reticulum - HB hypocrellin B - Trp tryptophan - DMSO dimethysulfoxide - Hepes N-2-hydroxyethyl piperazine-N-ethanesulfonic acad - SR(50005) SR vesicles with 1000-fold transmembrane Ca2+ gradient - SR(5050) SR vesicles without Ca2+ gradient - Ksv(app) apparent Stern-Volmer constant - Ksvi Stern-Volmer constant of component i for dynamic quenching  相似文献   

13.
Members of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) family are transmembrane proteins that are essential for the function of intracellular Ca(2+) storage organelles. We found that overexpression of avian muscle SERCA1a in transfected mouse fibroblasts led to the appearance of tubular membrane bundles that we termed plaques. These structures were generated in transfected cells when SERCA1a protein expression approached the endogenous level measured in chicken skeletal muscle. Plaque membranes had associated ribosomes and contained endoplasmic reticulum (ER) proteins. Endogenous ER protein levels were not elevated in SERCA1a-expressing cells, indicating that plaques were not generalized proliferations of ER but rather a reorganization of existing organelle membrane. Plaque formation also was observed in cells expressing a green fluorescent protein-SERCA1a fusion protein (GFP-SERCA1a). GFP-SERCA1a molecules displayed extensive lateral mobility between plaques, suggesting the presence of membrane continuities between these structures. Plaques were induced in cells expressing cDNA encoding a catalytically silent SERCA1a mutant indicating that ER redistribution was driven by a structural feature of the enzyme. SERCA1a-induced plaque formation shares some characteristics of sarcoplasmic reticulum (SR) biogenesis during muscle differentiation, and high-level SERCA1a expression in vivo may contribute to the formation of SR from ER during embryonic myogenesis.  相似文献   

14.
Heart sarcolemma has been shown to possess three catalytic sites (I, II and III) for methyl transferase activity (Panagia V, Ganguly PK and Dhalla NS. Biochim Biophys Acta 792: 245–253, 1984). In this study we examined the effect of phosphatidylethanolamine N-methylation on ATP-independent Ca2+ binding and ATPase activities in isolated rat heart sarcolemma. Both low affinity (1.25 mM Ca2+) and high affinity (50 µM Ca2+) Ca2+ binding activities were decreased following incubation of sarcolemmal membranes with AdoMet under optimal conditions for site II and III. Similarly, Ca2+ ATPase activities measured at 1.25 mM and 4 mM Ca2+ were depressed by phospholipid N-methylation. S-adenosyl homocysteine, a specific inhibitor of phospholipid N-methylation, prevented the depression of low affinity Ca2+ binding and Ca2+ ATPase activities, whereas the methylation-induced effect on the high affinity Ca2+ binding was not influenced by this agent. Pretreatment of sarcolemma with methyl acetimidate hydrochloride, an amino group blocking agent, also prevented the methylation-induced inhibition of both Ca2+ binding and Ca2+ ATPase. A further decrease in Ca2+ binding and Ca2+ ATPase activities together with a marked increase in the intramembranal level of PC was seen when membranes were methylated under the site III conditions in the presence of phosphatidyldimethylethanolamine as exogenous substrate. There was no effect of phospholipid methylation on sarcolemmal Na+-K+ ATPase and Mg2+ ATPase activities. These results indicate a role of phospholipid N-methylation in the regulation of sarcolemmal Ca2+ ATPase and low affinity ATP-independent Ca2+ binding.  相似文献   

15.
Vats  Yu. A.  Fedirko  N. V.  Klevets  M. Yu.  Voitenko  N. V. 《Neurophysiology》2002,34(1):5-12
Using a Ca2+-sensitive fluorescent indicator, Fura-2/AM, and a metallochromic dye, arsenazo, we measured the intracellular concentration of Ca2+ ([Ca2+] i ) and the content of total calcium in isolated acinar cells of the rat submandibular salivary gland. It was shown that the influence of a mercaptide-forming compound, sodium p-chloromercuribenzoate (pChMB), increased both the [Ca2+] i and content of total calcium but did not change the intensity of exocytosis. Such a situation is probably related to the fact that pChMB inhibits plasmalemmal Ca2+-ATPase (PMCA). The absence of changes in the exocytotic activity can be explained as follows: the influence of a pChMB-induced significant increase in the [Ca2+] i is neutralized due to the functioning of Ca2+-ATPases of the endoplasmic reticulum (SERCA), which pump Ca2+ into the store. Incubation of a microsomal fraction with pChMB resulted in suppression of the specific PMCA and SERCA activities with apparent constants of inhibition (I 50) 245 and 52 M, respectively. Dithiothreitol (DTT, 0.1 mM) increased the PMCA and SERCA activities (probably facilitating the access of substrate to the active centers of ATPases at the expense of a decrease in the number of disulfide bonds, which is followed by changes in the conformation of intracellular hydrophilic loops of their molecules). Dithiothreitol also recovered the suppression of PMCA and SERCA activities induced by pre-incubation with pChMB (by 45 and 32%, respectively); these activities did not, however, reach the initial levels. A probable interpretation of this fact is that DTT shields from the action of pChMB only superficial but not sterically less accessible SH groups. Limited proteolysis of the microsomes by -chymotrypsin decreased the specific PMCA and SERCA activities by 16 and 60%, respectively. Incubation of the microsomes in an -chymotrypsin-containing medium (15 sec) with subsequent addition of 150 M pChMB exerted almost no influence on the PMCA activity, whereas the SERCA activity dramatically increased (by 146%). This fact allows us to suggest that -chymotrypsin is capable of eliminating the inhibitory effect of pChMB on the SERCA activity; the mechanism of this effect remains unknown. Therefore, functionally important SH groups are present in the catalytic and active centers of both PMCA and SERCA; superficial SH groups dominate in the PMCA molecules, whereas SERCA is controlled by more deeply localized SH groups.  相似文献   

16.
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   

17.
We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676-684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166+/-26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.  相似文献   

18.
Summary Mutations in seven different maternal-effect loci on the second chromosome of Drosophila melanogaster all cause alterations in the anterior-posterior pattern of the embryo. Mutations in torso (tor) and trunk (trk) delete the anterior- and posterior-most structures of the embryo. At the same time they shift cellular fates which are normally found in the subterminal regions of the embryo towards the poles. Mutations in vasa (vas), valois (vls), staufen (stau) and tudor (tud) cause two embryonic defects. For one they result in absence of polar plasm, polar granules and pole cells in all eggs produced by mutant females. Secondly, embryos developing inside such eggs show deletions of abdominal segments. In addition, embryos derived from staufen mothers lack anterior head structures, embryos derived from valois mothers frequently fail to cellularize properly. Mutations in exuperantia (exu) cause deletions of anterior head structures, similar to torso, trunk and staufen. However in exu, these head structures are replaced by an inverted posterior end which comprises posterior midgut, proctodeal region, and often malpighian tubules.The effects of all mutations can be traced back to the beginning stages of gastrulation, indicating that the alterations in cellular fates have probably taken place by that time. Analysis of embryos derived from double mutant mothers suggests that these three phenotypic groups of mutants interfere with three different, independent pathways. All three pathways seem to act additively on the system which specifies anterior-posterior cellular fates within the egg.  相似文献   

19.
Toyoshima C  Nomura H  Sugita Y 《FEBS letters》2003,555(1):106-110
The structures of the Ca(2+)-ATPase (SERCA1a) have been determined for five different states by X-ray crystallography. Detailed comparison of the structures in the Ca(2+)-bound form and unbound (but thapsigargin-bound) form reveals that very large rearrangements of the transmembrane helices take place accompanying Ca2+ dissociation and binding and that they are mechanically linked with equally large movements of the cytoplasmic domains. The meanings of the rearrangements of the transmembrane helices and those of the cytoplasmic domains, and the mechanistic roles of the phosphorylation are now becoming clear.  相似文献   

20.
The presence of a high and nonlinear Ca2+-independent (or basal) ATPase activity in rat heart preparations makes difficult the reliable measurement of sarcoplasmic reticulum (SR) Ca2+-ATPase activity by usual methods. A spectrophotometric assay for the accurate determination of SR Ca2+-ATPase activity in unfractionated homogenates from rat heart is described. The procedure is based on that reported by Simonides and van Hardeveld (1990, Anal. Biochem. 191, 321-331) for skeletal muscle homogenates. To avoid overestimation of the Ca2+-ATPase activity of cardiac homogenates that occurs when sequential measurements of total and basal ATPase activities are performed, two parallel and independent assays are required: one with low (micromolar) and other high (millimolar) calcium concentration. Addition of thapsigargin (0.2 microM) blocked totally the activity considered as Ca2+-ATPase activity. Using this method, the rat heart homogenate Ca2+-ATPase activity was 10.5 +/- 2.0 micromol. min-1 x g-1 tissue wet weight (n = 8). Likewise, a spectrophotometric assay for measuring E-type Mg2+-ATPase activity in cardiac total homogenates has been developed, comparing the following characteristics of the enzymatic activity in homogenate and a membrane-enriched fraction: first-order rate constant for ATP-dependent inactivation, Km for ATP, and effects of concanavalin A, Triton X-100, and specific inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号