首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrate-induced polypeptides in membranes from corn seedling roots   总被引:2,自引:0,他引:2  
The polypeptide composition of the membranes from corn (Zeamays L.) seedling roots upon nitrate induction was determinedby two-dimensional gel electrophoresis and silver-staining.The synthesis of five polypeptides (49, 48, 35, 33, and 32 kDa)in the tono-plast fraction and four polypeptides (50, 49, 38,and 33 kDa) in the plasma membrane fraction was induced by both2.5 mM Ca(NO3)2 and 5 mM KNO3. Extensive washing of the membraneswith salt and NaOH demonstrated that three induced polypeptides(49, 48, and 35 kDa) in the tonoplast fraction and two inducedpolypeptides (49 and 33 kDa) in the plasma membrane fractionwere integral proteins. After incubation of seedlings in N-freemedium for 4 d, the 49 and 32 kDa polypeptides in the tonoplastfraction had disappeared. By the sixth day in N-free medium,the 35 kDa polypeptide had disappeared from the tonoplast fraction.The 50 kDa polypeptide of the plasma membrane fraction was nolonger detectable in seedlings incubated for 6 d in N-free medium.The size of the spots corresponding to the 33 kDa polypeptidesof both membrane fractions and to the 49 kDa polypeptide ofthe plasma membrane fraction was reduced following incubationof seedlings in N-free medium. The changes in nitrate-inducedpolypeptides in both membrane fractions following transfer toN-free medium correlated with a reduced capacity to take upnitrate in the treated seedlings. The results support the conclusionthat the nitrate-induced polypeptides may be involved in nitratetransport across the tonoplast and plasma membrane. Key words: Nitrate transport, induction, membrane peptides  相似文献   

2.
Protein kinase and phosphatase activities were studied in plasmalemma and tonoplast membrane fractions from corn (Zea mays L.) roots in order to test the hypothesis that the tonoplast H+-ATPase is regulated by intrinsic protein phosphorylation (G Zocchi, SA Rogers, JB Hanson 1983 Plant Sci Lett 31: 215-221), and to facilitate future purification of kinase activities from these membranes. Kinase activity in the plasmalemma was about three-fold higher than in the tonoplast, and displayed Michaelis Menten-type behavior with a Km value for MgATP2− of about 50 micromolar. Both activities were optimal at 3 millimolar free Mg2+ and had pH optima at 6.6 and 7.0 for the plasmalemma and tonoplast, respectively. Kinase activities in both fractions were stimulated by 1 micromolar free Ca2+, but calmodulin had no stimulatory effect, and chlorpromazine was inhibitory only at high concentrations. The pattern of phosphopeptides on SDS polyacrylamide gel electrophoresis was similar in both fractions except for one band of 50 kilodaltons that was present only in the tonoplast. A partially purified H+-ATPase fraction was prepared from tonoplast membranes, incubated under conditions optimal for protein phosphorylation. The three polypeptides (of 67, 57, and 36 kilodaltons), enriched in this fraction, did not become phosphorylated, suggesting that this protein is not regulated by endogenous protein phosphorylation. Protein phosphatase activity was detected only in the plasmalemma fraction. These results indicate that a regulatory cycle of protein phosphorylation and dephosphorylation may operate in the plasmalemma. The activity in the tonoplast appears to originate from plasmalemma contamination.  相似文献   

3.
The effect of a low molecular size (<5 KDa) humic fraction, essentially fulvic acids, on microsomal and tonoplast ion-stimulated ATPase activity was studied. After 20 min of pre-incubation with microsomal vesicles from oat roots, humic substances at organic C concentration of up to 0.5 μg cm-3 increased KCl-stimulated ATPase activity, while they inhibited enzyme activity at higher concentrations. Cl--stimulated ATPase activity of tightly sealed tonoplast-enriched vesicles was similarly affected by <5 KDa humic substances. This behaviour was not observed when gramicidin D was added to the assay medium. Proton transport by vesicles incubated up to 5 min with <5 KDa humic molecules was affected in a concentration-dependent manner, strongly resembling that observed for ATP hydrolysis, whereas it was severely reduced when the assay conditions were close to those used for measuring ATP hydrolysis (20 min pre-incubation of vesicles with humic substances). The transmembrane electrical potential was negatively affected, irrespective of the concentration of humic molecules. Furthermore, a 15-min pre-incubation strongly reduced the formation of a potential gradient. The size and concentrations of humic substances employed make an interaction with the vacuolar membrane of root cells plausible. The results show that the main target of humic molecules is the electrical membrane potential and suggest a possible way of interference of these naturally occurring substances with the biochemical mechanisms involved in plant mineral nutrition.  相似文献   

4.
Ni M  Beevers L 《Plant physiology》1990,94(2):745-751
Three dicarbonyl reagents were used to demonstrate the presence of an essential arginine residue in the NO3 uptake system from corn seedling roots (Zea mays L., Golden Cross Bantam). Incubation of corn seedlings with 2,3-butanedione (0.125-1.0 millimolar) and 1,2-cyclohexanedione (0.5-4.0 millimolar) in the presence of borate or with phenylglyoxal (0.25-2.0 millimolar) at pH 7.0 and 30°C resulted in a time-dependent loss of NO3 uptake following pseudo-first-order kinetics. Second-order rate constants obtained from slopes of linear plots of pseudo-first-order rate constants versus reagent concentrations were 1.67 × 10−2, 0.68 × 10−2, and 1.00 × 10−2 millimolar per minute for 2,3-butanedione, 1,2-cyclohexanedione, and phenylglyoxal, respectively, indicating the faster rate of inactivation with 2,3-butanedione at equimolar concentration. Double log plots of pseudo-first-order rate constants versus reagent concentrations yielded slope values of 1.031 (2,3-butanedione), 1.004 (1,2-cyclohexanedione), and 1.067 (phenylglyoxal), respectively, suggesting the modification of a single arginine residue. The effectiveness of the dicarbonyl reagents appeared to increase with increasing medium pH from 5.5 to 8.0. Unaltered Km and decreased Vmax in the presence of reagents indicate the inactivation of the modified carriers with unaltered properties. The results thus obtained indicate that the NO3 transport system possesses at least one essential arginine residue.  相似文献   

5.
Induction of corn (Zea mays L.) seedling root membrane polypeptides was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis in relation to induction of nitrate uptake. When nitrate uptake was studied using freshly harvested roots from 4-day old corn seedlings, a steady state rate of uptake was achieved after a lag of 2 to 3 hours. The plasma membrane fraction from freshly harvested roots (uninduced) and roots pretreated in 5 millimolar nitrate for 2.5 or 5 hours (induced) showed no differences in the major polypeptides with Coomassie blue staining. Autoradiography of the 35S-methionine labeled proteins, however, showed four polypeptides with approximate molecular masses of 165, 95, 70, and 40 kilodaltons as being induced by both 2.5 and 5-hour pretreatment in 5 millimolar nitrate. All four polypeptides appeared to be integral membrane proteins as shown by Triton X-114 (octylphenoxypolyethoxyethanol) washing of the membrane vesicles. Autoradiography of the two-dimensional gels revealed that several additional low molecular weight proteins were induced. A 5-hour pretreatment in 5 millimolar chloride also induced several of the low molecular weight polypeptides, although a polypeptide of about 30 kilodaltons and a group of polypeptides around 40 kilodaltons appeared to be specifically induced by nitrate. The results are discussed in relation to the possibility that some of the polypeptides induced by nitrate treatment may be directly involved in nitrate transport through the plasma membrane.  相似文献   

6.
Sealed microsomal vesicles were prepared from corn (Zea mays, Crow Single Cross Hybrid WF9-Mo17) roots by centrifugation of a 10,000 to 80,000g microsomal fraction onto a 10% dextran T-70 cushion. The Mg2+-ATPase activity of the sealed vesicles was stimulated by Cl and NH4+ and by ionophores and protonophores such as 2 micromolar gramicidin or 10 micromolar carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP). The ionophore-stimulated ATPase activity had a broad pH optimum with a maximum at pH 6.5. The ATPase was inhibited by NO3, was insensitive to K+, and was not inhibited by 100 micromolar vanadate or by 1 millimolar azide.

Quenching of quinacrine fluorescence was used to measure ATP-dependent acidification of the intravesicular volume. Quenching required Mg2+, was stimulated by Cl, inhibited by NO3, was insensitive to monovalent cations, was unaffected by 200 micromolar vanadate, and was abolished by 2 micromolar gramicidin or 10 micromolar FCCP. Activity was highly specific for ATP. The ionophore-stimulated ATPase and ATP-dependent fluorescence quench both required a divalent cation (Mg2+ ≥ Mn2+ > Co2+) and were inhibited by high concentrations of Ca2+. The similarity of the ionophore-stimulated ATPase and quinacrine quench and the responses of the two to ions suggest that both represent the activity of the same ATP-dependent proton pump. The characteristics of the proton-translocating ATPase differed from those of the mitochondrial F1F0-ATPase and from those of the K+-stimulated ATPase of corn root plasma membranes, and resembled those of the tonoplast ATPase.

  相似文献   

7.
Partial purification of a tonoplast ATPase from corn coleoptiles   总被引:7,自引:13,他引:7       下载免费PDF全文
Mandala S  Taiz L 《Plant physiology》1985,78(2):327-333
The tonoplast ATPase from corn coleoptile membranes was solubilized using a two-step procedure consisting of a pretreatment with 0.15% (w/v) deoxycholate to remove 60% of the protein, and 40 millimolar octyl-glucoside to solubilize the ATPase. During ultracentrifugation, the solublized ATPase entered a linear sucrose gradient faster than the majority of the protein, resulting in an 11-fold purification over the initial specific activity. The partially purified ATPase was almost completely inhibited by KNO3 with an estimated Ki of 10 millimolar. The specific activity of the KNO3-sensitive ATPase was increased 29-fold during purification. N,N′-Dicyclohexylcarbodiimide also completely inhibited the ATPase with half-maximal effects at a concentration of 4 micromolar. Neither vanadate nor azide inhibited enzyme activity. The purified ATPase was stimulated by Cl and preferred Mg-ATP as substrate. Analysis of frations from the sucrose gradient by sodium dodecyl sulfate-polyacrylamide gel electrophoresis led to the identification of two major polypeptides at 72,000 and 62,000 daltons which were best correlated with ATPase activity. Several minor bands also appeared to copurify with enzyme activity, but were less consistent. Radiation inactivation experiments with intact membranes indicated that the functional molecular size of the tonoplast ATPase was nearly 400,000 daltons. This suggests that the ATPase is composed of several polypeptides, possibly including the 72,000- and 62,000-dalton proteins.  相似文献   

8.
The crude lysosomal fraction of corn seedling root tips contains an arylsulphatase (E.C. 3.1.6.1) which hydrolysed p-nitrophenyl sulphate at pH 8.0 but had no activity towards p-nitrocatechol sulphate. The Km value for p-nitrophenyl sulphate was 1.24 mM. The hydrolysis of p-nitrophenyl sulphate was linear up to 2 h and the rate was proportional to the amount of enzyme added. The enzyme was strongly inhibited by cyanide, fluoride and phosphate ions and did not resemble the arylsulphatases of bacterial and animal origin.  相似文献   

9.
Potential-dependent anion movement into tonoplast vesicles from oat roots (Avena sativa L. var Lang) was monitored as dissipation of membrane potentials (Δψ) using the fluorescence probe Oxonol V. The potentials (positive inside) were generated with the H+-pumping pyrophosphatase, which is K+ stimulated and anion insensitive. The relative rate of ΔΨ dissipation by anions was used to estimate the relative permeabilities of the anions. In decreasing order they were: SCN (100) > NO3 (72) = Cl (70) > Br (62) > SO42− (5) = H2PO4 (5) > malate (3) = acetate (3) > iminodiacetate (2). Kinetic studies showed that the rate of Δψ dissipation by Cl and NO3, but not by SCN, was saturable. The Km values for Cl and NO3 uptake were about 2.3 and 5 millimolar, respectively, suggesting these anions move into the vacuole through proteinaceous porters. In contrast to a H+-coupled Cl transporter on the same vesicles, the potential-dependent Cl transport was insensitive to 4,4′-diisothiocyano-2,2′-stilbene disulfonate. These results suggest the existence of at least two different mechanisms for Cl transport in these vesicles. The potentials generated by the H+-translocating ATPase and H+-pyrophosphatase were nonadditive, giving support to the model that both pumps are on tonoplast vesicles. No evidence for a putative Cl conductance on the anion-sensitive H+-ATPase was found.  相似文献   

10.
Sodium/proton antiporter activity in the plasma membrane and tonoplast of cucumber seedling roots treated with 200 mM NaCl for 24 h was determined. It was observed that plasma membrane and tonoplast antiporter activity was only present in membranes from salt-treated plants. In addition, the plasma membrane antiporter protein was present in membranes after induction with NaCl, whereas tonoplast antiporter protein was observed in control and at elevated level in NaCl-treated plants. Moreover, based on the affinity of studied antiporter proteins to sodium ions, it could be assumed that excess sodium ions are firstly translocated from the cytosol to the vacuole and then excluded to the apoplast through the plasma membrane.  相似文献   

11.
Chang CW 《Plant physiology》1968,43(5):669-674
Investigation was made for the effect of fluoride on plant growth, acid soluble nucleotides, and RNA in germinating corn seedling roots. Fluoride suppresses root growth as measured by changes in fresh weight. Column chromatographic analyses demonstrated that fluoride modifies ratios of acid soluble nucleotide species. The relative amount of nucleotides is altered mainly due to triphosphate nucleotides of which ATP is most accumulated. Paper chromatographic analyses showed that fluoride induces changes of RNA structure. The RNA is characterized by lowered relative content of cytosine and by increased ratio of cytosine to guanine. Adenine is depressed significantly only in the root tissue treated by the highest fluoride concentration.  相似文献   

12.
Corn (Zea mays L. cv Golden Cross Bantam) coleoptile microsomal vesicles have been isolated which are capable of ATP-driven H+-transport as measured by [14C]methylamine accumulation and quinacrine fluorescence quenching. Formation of the pH gradient in vitro shows a high specificity for ATP·Mg, is temperature-sensitive, exhibits a pH optimum at 7.5, and is inhibited by carbonyl cyanide-m-chlorophenylhydrazone. Of the divalent cations tested, Mn2+ is almost as effective as Mg2+, while Ca2+ is ineffective. Excess divalent cations, particularly Ca2+, reduces the pH gradient. H+ transport is strongly promoted by anions, especially chloride, while potassium does not affect pump activity. Studies with 36Cl indicate that ATP-driven H+ transport into the vesicles is associated with chloride uptake. Both carbonyl cyanide-m-chlorophenylhydrazone and the anion transport inhibitor, 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene, inhibit methylamine accumulation and 36Cl uptake. Proton pumping is also blocked by diethyl stilbestrol and N,N′-dicyclohexylcarbodiimide, but is insensitive to oligomycin and vanadate. These properties of the pump are inconsistent with either a mitochondrial or plasma membrane origin.  相似文献   

13.
Although the results of lipid analyses from several plant species have been available for many years a complete characterization of the corn root plasma membrane is still lacking. The present study provides a detailed analysis of individual lipids and a characterization of the membrane fluidity of corn (Zea mays L.) root plasma membranes isolated by phase-partitioning. Phospholipids (43.9 mol%), sterols (40.8 mol%), and sphingolipids in the form of glucocerebroside (6.8 mol%) constitute the major lipid classes. Stigmasterol (19.8 mol%), campesterol (13.0 mol%), phosphatidylcholine 15.8 mol%), and phosphatidylethanolamine (14.2 mol%) represent the most ubiquitous individual lipids. Hydroxy fatty acids make up 80.9 mol% and very long chain fatty acids are almost 78% of fatty acids in glucocerebroside. Hydroxy arachidic acid (20:0 h) and hydroxy lignoceric acid (24:0 h) are most prominent and glucocerebroside from corn root plasma membranes contains virtually no unsaturated fatty acids. Among the phospholipids only phosphatidylserine displayed a high proportion of very long chain fatty acids (e.g., behenic and lignoceric acid). Membrane fluidity was estimated by fluorescence anisotropy. Due to the high sterol content the plasma membrane of corn roots is relatively rigid.  相似文献   

14.
Hairy roots and suspension cell cultures are commonly used in deciphering different problems related to the biochemistry and physiology of plant secondary metabolites. Here, we address about the issue of possible differences in the profiles of flavonoid compounds and their glycoconjugates derived from various plant materials grown in a standard culture media. We compared profiles of flavonoids isolated from seedling roots, hairy roots, and suspension root cell cultures of a model legume plant, Medicago truncatula. The analyses were conducted with plant isolates as well as the media. The LC/MS profiles of target natural products obtained from M. truncatula seedling roots, hairy roots, and suspension root cell cultures differed substantially. The most abundant compounds in seedlings roots were mono- and diglucuronides of isoflavones and/or flavones. This type of glycosylation was not observed in hairy roots or suspension root cell cultures. The only recognized glycoconjugates in the latter samples were glucose derivatives of isoflavones. Application of a high-resolution mass spectrometer helped evaluate the elemental composition of protonated molecules, such as [M + H]+. Comparison of collision-induced dissociation MS/MS spectra registered with a quadrupole time-of-flight analyzer for tissue extracts and standards allowed us to estimate the aglycone structure on the basis of the pseudo-MS3 experiment. Structures of these natural products were described according to the registered mass spectra and literature data. The analyses conducted represent an overview of flavonoids and their conjugates in different types of plant material representing the model legume, M. truncatula.  相似文献   

15.
Fructose-bisphosphate aldolase is a glycolytic enzyme whose activity increases in rice roots treated with gibberellin (GA). To investigate the relationship between aldolase and root growth, GA-induced root aldolase was characterized. GA3 promoted an increase in aldolase accumulation when 0.1 M GA3 was added exogenously to rice roots. Aldolase accumulated abundantly in roots, especially in the apical region. To examine the effect of aldolase function on root growth, transgenic rice plants expressing antisense aldolase were constructed. Root growth of aldolase-antisense transgenic rice was repressed compared with that of the vector control transgenic rice. Although aldolase activity increased by 25% in vector control rice roots treated with 0.1 M GA3, FBPA activity increased very little by 0.1 M GA3 treatment in the root of aldolase-antisense transgenic rice. Furthermore, aldolase co-immunoprecipitated with antibodies against vacuolar H+-ATPase in rice roots. In the root of OsCDPK13-antisense transgenic rice, aldolase did not accumulate even after treatment with GA3. These results suggest that the activation of glycolytic pathway function accelerates root growth and that GA3-induced root aldolase may be modulated through OsCDPK13. Aldolase physically associates with vacuolar H-ATPase in roots and may regulate the vacuolar H-ATPase mediated control of cell elongation that determines root length.  相似文献   

16.
Higher plant cells have one or more vacuoles important for maintaining cell turgor and for the transport and storage of ions and metabolites. One driving force for solute transport across the vacuolar membrane (tonoplast) is provided by an ATP-dependent electrogenic H+ pump. The tonoplast H+-pumping ATPase from oat roots has been solubilized with Triton X-100 and purified 16-fold by Sepharose 4B chromatography. The partially purified enzyme was sensitive to the same inhibitors (N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide (DCCD), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid, and NO-3) as the native membrane-bound enzyme. The partially purified enzyme was stimulated by Cl- (Km(app) = 1.0 mM) and hydrolyzed ATP with a Km(app) of 0.25 mM. Thus, the partially purified tonoplast ATPase has retained the properties of the native membrane-bound enzyme. [14C]DCCD labeled a single polypeptide (14-18 kDa) in the purified tonoplast ATPase preparation. Two major polypeptides, 72 and 60 kDa, that copurified with the ATPase activity and the 14-18-kDa DCCD-binding peptide are postulated to be subunits of a holoenzyme of 300-600 kDa (estimated by gel filtration). Despite several catalytic similarities with the mitochondrial H+-ATPase, the major polypeptides of the tonoplast ATPase differed in mass from the alpha and beta subunits (58 and 55 kDa) and the [14C] DCCD-binding proteolipid (8 kDa) of the oat F1F0-ATPase.  相似文献   

17.
Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots   总被引:10,自引:0,他引:10  
The subunit organization of the tonoplast H+-pumping ATPase from oat roots (Avena sativa L. var. Lang) was investigated. Tonoplast vesicles were treated with low ionic strength solutions (0.1 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer or 0.1 mM Na EDTA), carbonate, or a chaotropic reagent (KI), and then centrifuged to give a soluble fraction and a pellet. Treatments with low ionic strength solutions or KI resulted in 70-80% reduction in the membrane-associated ATPase activity, but did not affect the K+-stimulated pyrophosphatase activity. Polypeptides of 72, 60, and 41 kDa were solubilized from tonoplast vesicles by these wash treatments. These polypeptides reacted with polyclonal antibodies against the holoenzyme of tonoplast ATPase (anti-ATPase) and copurified with the tonoplast ATPase activity during gel filtration chromatography (Sepharose CL-6B). Mono-specific antibody against the 72- or 60-kDa polypeptide reacted with the solubilized 72- or 60-kDa polypeptide, respectively. However, the N,N-[14C]dicyclohexylcarbodiimide-binding 16-kDa polypeptide and a 13-kDa polypeptide that also reacted with anti-ATPase and copurified with the tonoplast ATPase activity during gel filtration remained in the pellets after the wash treatments. We conclude that the 72- and 60-kDa polypeptides appear to be peripheral subunits of the tonoplast ATPase and that the 16-kDa polypeptide is probably embedded in the membrane bilayer. Additional subunits of the ATPase complex may include a 41-kDa (peripheral) and a 13-kDa (integral) polypeptide. Based on these results, a working model of the tonoplast ATPase analogous to the F1F0-ATPase is proposed.  相似文献   

18.
A H+-translocating inorganic pyrophosphatase (H+-PPase) was associated with low density membranes enriched in tonoplast vesicles of oat roots. The H+-PPase catalyzed the electrogenic transport of H+ into the vesicles, generating a pH gradient, inside acid (quinacrine fluorescence quenching), and a membrane potential, inside positive (Oxonol V fluorescence quenching). Transport activity was dependent on cations with a selectivity sequence of Rb+ = K+ > Cs+; but it was inhibited by Na+ or Li+. Maximum rates of transport required at least 20 millimolar K+ and the Km for this ion was 4 millimolar. Fluoride inhibited both ΔpH formation and K+-dependent PPase activity with an I50 of 1 to 2 millimolar. Inhibitors of the anion-sensitive, tonoplast-type H+-ATPase (e.g. a disulfonic stilbene or NO3) had no effect on the PPase activity. Vanadate and azide were also ineffective. H+-pumping PPase was inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and N-ethylmaleimide, but its sensitivity to N,N′-dicyclohexylcarbodiimide was variable. The sensitivity to ions and inhibitors suggests that the tonoplast H+-PPase and the H+-ATPase are distinct activities and this was confirmed when they were physically separated after Triton X-100 solubilization and Sepharose CL-6B chromatography. H+ pumping activity was strongly affected by Mg2+ and pyrophosphate (PPi) concentrations. At 5 millimolar Mg2+, H+ pumping showed a KmaPP for PPi of 15 micromolar. The rate of H+ pumping at 60 micromolar PPi was often equivalent to that at 1.5 millimolar ATP. The results suggest PPi hydrolysis could provide another source of a proton motive force used for solute transport and other energy-requiring processes across the tonoplast and other membranes with H+-PPase.  相似文献   

19.
Proton efflux from corn roots induced by tripropyltin   总被引:1,自引:1,他引:0       下载免费PDF全文
Tripropyltin restores medium acidification by washed corn root tissue in which electrogenic H+ efflux has been blocked by ATPase inhibitors or injury. However, the restored H+ efflux is not electrogenic and will not drive K+ influx, and, by itself, tripropyltin is inhibitory to K+ influx. Tripropyltin elicits a 5-fold increase in endogenous chloride efflux, and Cl/OH exchange can, thus, account for the observed acidification of the medium. This explanation cannot be applied equally to the acidification produced by the K+/H+ exchanging ionophore nigericin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号