首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bunce JA 《Annals of botany》2007,100(1):67-73
BACKGROUND AND AIMS: Accounting for the acclimation of respiration of plants to temperature remains a major problem in analysis of carbon balances of plants and ecosystems. Translocation of carbohydrates out of leaves in the dark requires energy from respiration. In this study relationships between the responses of leaf respiration and translocation to temperature are examined. METHODS: Direct and acclimatory responses to temperature of respiration and translocation in the dark were investigated in mature leaves of soybean and amaranth. In some cases translocation from leaves was prevented by heat-girdling the phloem in the leaf petiole, or photosynthesis during the previous day was altered. KEY RESULTS: In both species short-term increases in temperature early in the dark period led to exponential increases in rates of respiration. However, respiration rates decreased toward the end of the dark period at higher temperatures. Stopping translocation largely prevented this decrease in respiration, suggesting that the decrease in respiration was due to low availability of substrates. In soybean, translocation also increased with temperature, and both respiration and translocation fully acclimated to temperature. In amaranth, translocation in the dark was independent of temperature, and respiration did not acclimate to temperature. Respiration and translocation rates both decreased with lower photosynthesis during the previous day in the two species. CONCLUSIONS: Substrate supply limited total night-time respiration in both species at high temperatures and following days with low photosynthesis. This resulted in an apparent acclimation of respiration to high temperatures within one night in both species. However, after long-term exposure to different temperatures there was no evidence that lack of substrates limited respiration in either species. In amaranth, respiration did not limit translocation rates over the temperature range of 20-35 degrees C.  相似文献   

2.
Villar R  Held AA  Merino J 《Plant physiology》1995,107(2):421-427
Dark respiration in light as well as in dark was estimated for attached leaves of an evergreen (Heteromeles arbutifolia Ait.) and a deciduous (Lepechinia fragans Greene) shrub species using an open gas-exchange system. Dark respiration in light was estimated by the Laisk method. Respiration rates in the dark were always higher than in the light, indicating that light inhibited respiration in both species. The rates of respiration in the dark were higher in the leaves of the deciduous species than in the evergreen species. However, there were no significant differences in respiration rates in light between the species. Thus, the degree of inhibition of respiration by light was greater in the deciduous species (62%) than in the evergreen species (51%). Respiration in both the light and darkness decreased with increasing leaf age. However, because respiration in the light decreased faster with leaf age than respiration in darkness, the degree of inhibition of respiration by light increased with leaf age (from 36% in the youngest leaves to 81% in the mature leaves). This suggests that the rate of dark respiration in the light is related to the rate of biosynthetic processes. Dark respiration in the light decreased with increasing light intensity. Respiration both in the light and in the dark was dependent on leaf temperature. We concluded that respiration in light and respiration in darkness are tightly coupled, with variation in respiration in darkness accounting for more than 60% of the variation in respiration in light. Care must be taken when the relation between respiration in light and respiration in darkness is studied, because the relation varies with species, leaf age, and light intensity.  相似文献   

3.
The role of acclimation of dark respiration to temperature and CO2 concentration and its relationship to growth are critical in determining plant response to predicted global change. We explored temperature acclimation of respiration in seedlings of tree species of the North American boreal forest. Populus tremuloides, Betula papyrifera, Larix laricina, Pinus banksiana, and Picea mariana plants were grown from seed in controlled-environments at current and elevated concentrations of CO2 (370 and 580 μmol mol–1) in combination with three temperature treatments of 18/12, 24/18, and 30/24 °C (light/dark period). Specific respiration rates of roots and shoots acclimated to temperature, damping increases in rates across growth-temperature environments compared to short-term temperature responses. Compared at a standard temperature, root and shoot respiration rates were, on average, 40% lower in plants grown at the highest compared to lowest growth temperature. Broad-leaved species had a lower degree of temperature acclimation of respiration than did the conifers. Among species and treatment combinations, rates of respiration were linearly related to size and relative growth rate, and relationships were comparable among growth environments. Specific respiration rates and whole-plant respiratory CO2 efflux as a proportion of daily net CO2 uptake increased at higher growth temperatures, but were minimally affected by CO2 concentration. Whole-plant specific respiration rates were two to three times higher in broad-leaved than coniferous species. However, compared to faster-growing broad-leaved species, slower-growing conifers lost a larger proportion of net daily CO2 uptake as respiratory CO2 efflux, especially in roots. Interspecific variation in acclimation responses of dark respiration to temperature is more important than acclimation of respiration to CO2 enrichment in modifying tree seedling growth responses to projected increases in CO2 concentration and temperature.  相似文献   

4.
Abstract Saxifraga cernua, a perennial herb distributed throughout the arctic and subarctic regions, shows high levels of dark respiration. The amount of respiration exhibited by leaves and whole plants at any temperature is influenced by the pretreatment temperature. Plants grown at 10°C typically show higher dark respiration rates than plants grown at 20°C. The levels of alternative-pathway respiration (or cyanide-insensitive respiration) in leaves of S. cernua grown at high and low temperatures were assessed by treating leaf discs with 0.25 mol m?3 salicylhydroxamic acid during measurements of oxygen consumption. Alternative pathway respiration accounted for up to 75% of the total respiration. Tissues from 20°C-grown plants yielded a Q10 of 3.37 for normal respiration, and of 0.97 for alternative-pathway respiration. Tissues from 10°C-grown plants yielded a Q10 of 2.55 for normal respiration, and of 0.79 for alternative-pathway respiration. The alternative pathway does not appear to be as temperature sensitive as the normal cytochrome pathway. A simple energy model was used to predict the temperature gain expected from these high rates of alternative-pathway respiration. The model shows that less than 0.02°C can be gained by leaves experiencing these high respiration rates.  相似文献   

5.
Gas exchange studies were conducted on two shrub species found in cool shrub-steppe communities of the American West, big sagebrush (Artemisia tridentata subsp. tridentata Nutt.) and broom snakeweed (Gutierrezia sarothrae [Pursh] Britt. and Rusby), with a goal of evaluating characteristics and relative contributions of green stem and leaf material to total shoot CO2 exchange at different temperatures. Variations in tissue temperature exerted a pronounced effect on CO2 exchange—net photosynthesis and dark respiration—of green stems and leaves of both species. Definite temperature optima of net photosynthesis were noted, and dark respiration rates consistently increased with increases in temperature. Green stems of both species exhibited sizable dark respiration rates, although stem rates at all temperatures were lower than corresponding leaf rates. Artemisia tridentata did not exhibit sizeable green stem net photosynthesis even under conditions of optimal temperature and water availability, and leaf net photosynthesis rates were much lower than those of G. sarothrae. However, A. tridentata in general possessed a greater leaf biomass than G. sarothrae. Green stems of G. sarothrae exhibited considerable rates of net photosynthesis under both optimal and sub-optimal temperature and water availability conditions. A higher optimum temperature of net photosynthesis was noted for stems than for leaves of G. sarothrae. The adaptive significance of these interspecific differences in CO2 exchange characteristics is discussed.  相似文献   

6.
Bunce JA 《Annals of botany》2004,93(6):665-669
BACKGROUND AND AIMS: Respiration of autotrophs is an important component of their carbon balance as well as the global carbon dioxide budget. How autotrophic respiration may respond to increasing carbon dioxide concentrations, [CO(2)], in the atmosphere remains uncertain. The existence of short-term responses of respiration rates of plant leaves to [CO(2)] is controversial. Short-term responses of respiration to temperature are not disputed. This work compared responses of dark respiration and two processes dependent on the energy and reductant supplied by dark respiration, translocation and nitrate reduction, to changes in [CO(2)] and temperature. METHODS: Mature soybean leaves were exposed for a single 8-h dark period to one of five combinations of air temperature and [CO(2)], and rates of respiration, translocation and nitrate reduction were determined for each treatment. KEY RESULTS: Low temperature and elevated [CO(2)] reduced rates of respiration, translocation and nitrate reduction, while increased temperature and low [CO(2)] increased rates of all three processes. A given change in the rate of respiration was accompanied by the same change in the rate of translocation or nitrate reduction, regardless of whether the altered respiration was caused by a change in temperature or by a change in [CO(2)]. CONCLUSIONS: These results make it highly unlikely that the observed responses of respiration rate to [CO(2)] were artefacts due to errors in the measurement of carbon dioxide exchange rates in this case, and indicate that elevated [CO(2)] at night can affect translocation and nitrate reduction through its effect on respiration.  相似文献   

7.
Variation in Photorespiration in Lolium   总被引:1,自引:0,他引:1  
The rate of photorespiration in several grass species was shownto be highly variable and dependent on the species, genotype,and conditions under which the plants were grown. Photorespiration,measured as oxygen uptake, was negligible in Cenchrus ciliarisand Paspalum dilatatum but significant in Lolium spp. and Festucaarundinacea. There were significant differences in the rateof photorespiration among plants within a Lolium populationof diverse origin and these differences were independent ofthe conditions under which the plants were grown. Among thetemperate grasses there was a significant correlation betweenphotorespiration and the CO2-compensation concentration andboth parameters were very low in P. dilatatum. Plants grownin day/night temperatures of 15/10 °C compared with 25/20°C had faster rates of dark respiration but slower ratesof light respiration when measured at the same temperature.Photorespiration was faster than dark respiration although differencesin respiration among plants in the light were not shown in thedark.  相似文献   

8.
The linear response of photosynthesis to light at low photon flux densities is known to change abruptly in the vicinity of the light compensation point so that the quantum yield seems to decrease as radiation increases. We studied this `Kok effect' in attached sunflower (Helianthus annuus L. cv IS894) leaves using gas exchange techniques. The effect was present even though respiration was constant in the dark. It was observed at a similar photon flux density (7 to 11 micromole photons per square meter per second absorbed photosynthetically active radiation) despite a wide range of light compensation points as well as rates of photosynthesis. The effect was not apparent when photorespiration was inhibited at low pO2 (1 kilopascal), but this result was complicated because dark respiration was quite O2-sensitive and was partially suppressed under these conditions. The Kok effect was observed at saturating pCO2 and, therefore, could not be explained by a change in photorespiration. Instead, the magnitude of the effect varied as dark respiration varied in a single leaf, and was minimized when dark respiration was minimized, indicating that a partial suppression of dark respiration by light is responsible. Quantum yields measured at photon flux densities between 0 and 7 to 11 micromole photons per square meter per second, therefore, represent the combined yields of photosynthesis and of the suppression of a component of dark respiration by light. This leads to an overestimate of the quantum yield of photosynthesis. In view of these results, quantum yields of photosynthesis must be measured (a) when respiration is constant in the dark, and (b) when dark respiration has been inhibited either at low pO2 to eliminate most of the light-induced suppression of dark respiration or at photon flux densities above that required to saturate the light-induced suppression of dark respiration. Significant errors in quantum yields of photosynthesis can result in leaves exhibiting this respiratory behavior if these principles are not followed.  相似文献   

9.
While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.  相似文献   

10.
Abstract Rates of oxygen uptake were measured in leaves of Saxifraga cernua which had been exposed to an 18-h photoperiod. These rates were compared to those in plants which had been exposed to continuous light. Rates of total dark respiration and alternative pathway respiration measured at the end of the photoperiod gradually decreased over the initial 3 d of exposure to an 18-h photoperiod. Thereafter, respiratory rates were constant. Rates of total dark respiration and alternative pathway respiration decreased during the 6h dark period. Rates of normal and alternative pathway respiration are equally affected during the dark period. The respiratory rates had reached a new minimum level 3 d after the initiation of a dark period. These results suggest that respiration rates in arctic plants are high because of the long photoperiod in the arctic. The kinetics of photoperiod induced changes in respiration are slow enough to suggest the involvement of the biological clock in setting respiration rates. Indeed, total dark respiration and alternative pathway respiration show a definite circadian rhythm. Free-running experiments show that normal respiration changes much less (has a smaller amplitude of variation) than alternative pathway respiration and that alternative pathway respiration accounts for most of the rhythmicity of respiration.  相似文献   

11.
Effects of temperature on the gas exchange of leaves in the light and dark   总被引:3,自引:0,他引:3  
G. Hofstra  J. D. Hesketh 《Planta》1969,85(3):228-237
Summary Evolution of CO2 into CO2-free air was measured in the light and in the dark over a range of temperatures from 15 to 50°. Photosynthetic rates were measured in air and O2-free air over the same range of temperatures. Respiration in the light had a different sensitivity to temperature compared with respiration in the dark. At the lower temperatures the rate of respiration in the light was higher than respiration in the dark, whereas at temperatures above 40° the reverse was observed. For any one species the maximum rates of photosynthesis and photorespiration occur at about the same temperature. The maximum rate for dark respiration generally is found at a temperature about 10° higher. Zea mays and Atriplex nummularia showed no enhancement of photosynthesis in O2-free air nor any evolution of CO2 in CO2-free air at any of the temperatures.  相似文献   

12.
Summary The light saturated photosynthesis, dark respiration and light independent carbon fixation of macroalgal species endemic to the Antarctic were measured. Five brown algae. Ascoseira mirabilis, Desmarestia anceps, D. antarctica, Phaeurus antarcticus, Himantothallus grandifolius and the red alga Palmaria decipiens were included. Rates of these three parameters at 0°C were very similar to those measured in other studies on temperate algae at higher temperature. This indicates a high degree of physiological adaptation to the Antarctic environment within these species. A comparison was made of polarographic and chemical means of measuring oxygen flux during photosynthesis and dark respiration at low temperature. There was a good correlation between measurements of oxygen evolution and carbon fixation, although apparent photosynthetic quotient values were in most cases high.Abbreviations HEPES N-(Hydroxyethyl) piperazine-N-(2 ethane-sulphonic acid) - RuBP D-ribulose 1,5-bisphosphate Contribution No. 415 from the Alfred-Wegener-Institut für Polaru. Meeresforschung  相似文献   

13.
The effects of soil-water potential, temperature, and visibleirradiance interactions on net photo-synthetic and dark respirationrates of Pennisetum purpureum Schumach., a tropical C4 grassand Calopogonium mucunoides Desv., a C3 leguminous herb werestudied. The net photosynthetic rates of the two species decreased withdecreasing soil water potential and at all levels of irradianceconsidered. Similarly, the net photosynthetic rates of the twospecies decreased as soil water potential decreased at all temperatures. The C4 species reached light saturation at very high irradiancewhereas the light saturation of the C3 species occurred at relativelylow irradiance at high temperatures and low soil water potential. The dark respiration rates decreased with decreasing soil waterpotential and increased as temperature increased from 20 °Cto 40 °C. Key words: Soil water potential, Temperature, Irradiance, Photosynthesis, Respiration, Tropical weeds  相似文献   

14.
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed for 4 years in environment-controlled chambers that maintained: (1) ambient conditions (CON); (2) elevated atmospheric CO2 concentration (ambient + 350 micro mol mol-1; EC); (3) elevated temperature (ambient +2-6 degrees C; ET); or (4) elevated CO2 and elevated temperature (ECT). The dark respiration rates of 1-year-old shoots, from which needles had been partly removed, were measured over the growing season in the fourth year. In all treatments, the temperature coefficient of respiration, Q10, changed with season, being smaller during the growing season than at other times. Respiration rate varied diurnally and seasonally with temperature, being highest around mid-summer and declining gradually thereafter. When measurements were made at the temperature of the chamber, respiration rates were reduced by the EC treatment relative to CON, but were increased by ET and ECT treatments. However, respiration rates at a reference temperature of 15 degrees C were reduced by ET and ECT treatments, reflecting a decreased capacity for respiration at warmer temperatures (negative acclimation). The interaction between season and treatment was not significant. Growth respiration did not differ between treatments, but maintenance respiration did, and the differences in mean daily respiration rate between the treatments were attributable to the maintenance component. We conclude that maintenance respiration should be considered when modelling respiratory responses to elevated CO2 and elevated temperature, and that increased atmospheric temperature is more important than increasing CO2 when assessing the carbon budget of pine forests under conditions of climate change.  相似文献   

15.
The effects of climatic factors, especially those of temperature, on the carbon balance of the moss Sanionia uncinata were examined on King George Island in the maritime Antarctic. Net photosynthesis (P(n)) and dark respiration rates of two colonies (A and B) were measured with a portable infrared gas analyzer. Colony A showed small P(n) compared with its dark respiration rates throughout the growing season. Colony B showed much higher net photosynthetic rates, but the dark respiration rates of the two colonies did not differ significantly. Net photosynthetic rate determined at light saturation was almost constant over a wide temperature range, from 5 degrees to 15 degrees C, while the dark respiration was strongly affected by temperature. To assess the impact of warming on the carbon balance of the moss, cumulative carbon gain of the moss was calculated using a simulation model for the main part of the growing season. The results suggest that climatic warming may cause a reduction of carbon gain in some relatively photosynthetically inactive moss colonies.  相似文献   

16.
Interactions between growth temperature and measurement temperature were examined for their effects on white spruce [ Picea glauca (Moench) Voss] root respiration. Total dark respiration rates increased with measurement temperature and were unaffected by growth temperature. Partitioning of respiratory electron flow between the cytochrome and alternative pathways was also unaffected by growth temperature. The proportion of respiration mediated by the alternative pathway was constant at measurement temperatures between 4°C and 18°C, but was increased at higher temperatures. Changes in alternative pathway activity were paralleled by changes in capacity, and the alternative pathway was almost fully engaged at all temperatures. Roots grown at low temperature displayed higher carbohydrate levels than roots grown at higher temperatures, but respiration rate was unaffected. Spruce root respiration did not appear to acclimate to growth temperature, and the alternative pathway was not preferentially engaged at low temperature.  相似文献   

17.
The purpose of this experiment was to determine how respirationof soybeans may respond to potential increases in atmosphericcarbon dioxide concentration and growth temperature. Three cultivarsof soybeans (Glycine max L. Merr.), from maturity groups 00,IV, and VIII, were grown at 370, 555 and 740cm3m-3carbon dioxideconcentrations at 20/15, 25/20, and 31/26°C day/night temperatures.Rates of carbon dioxide efflux in the dark were measured forwhole plants several times during exponential growth. Thesemeasurements were made at the night temperature and the carbondioxide concentration at which the plants were grown. For thelowest and highest temperature treatments, the short term responseof respiration rate to measurement at the three growth carbondioxide concentrations was also determined. Elemental analysisof the tissue was used to estimate the growth conversion efficiency.This was combined with the observed relative growth rates toestimate growth respiration. Maintenance respiration was estimatedas the difference between growth respiration and total respiration.Respiration rates were generally sensitive to short term changesin the measurement carbon dioxide concentration for plants grownat the lowest, but not the highest carbon dioxide concentration.At all temperatures, growth at elevated carbon dioxide concentrationsdecreased total respiration measured at the growth concentration,with no significant differences among cultivars. Total respirationincreased very little with increasing growth temperature, despitean increase in relative growth rate. Growth respiration wasnot affected by carbon dioxide treatment at any temperature,but increased with temperature because of the increase in relativegrowth rate. Values calculated for maintenance respiration decreasedwith increasing carbon dioxide concentration and also decreasedwith increasing temperature. Calculated values of maintenancerespiration were sometimes zero or negative at the warmer temperatures.This suggests that respiration rates measured in the dark maynot have reflected average 24-h rates of energy use. The resultsindicate that increasing atmospheric carbon dioxide concentrationmay reduce respiration in soybeans, and respiration may be insensitiveto climate warming. Glycine max L. (Merr.); carbon dioxide; respiration; temperature; climate change  相似文献   

18.
Summary The C4 species, Euphorbia forbesii, and the C3 species, Claoxylon sandwicense, occupy cool, shaded habitats in Hawaii. Both of these species exhibit the photosynthetic characteristics of typical shade plants: low light-saturated photosynthetic rates, low dark respiration rates, low light levels for saturation of photosynthesis, and low light compensation points. In addition, the quantum yields of the two species are similar at leaf temperatures near 22°C, reflecting a significant increase in the quantum yield of E. forbesii over that of C4 species from open habitats. C. sandwicense has a lower dark respiration rate than E. forbesii. Hence, since the quantum yields of the two species are similar at cool temperatures, C. sandwicense has a higher photosynthetic rate than E. forbesii at low incident photon flux densities. As a consequence, C. sandwicense should have a greater carbon gain than E. forbesii under the diffuse radiation conditions of their native habitat. However, since E. forbesii has a higher light-saturated photosynthetic rate than C. sandwicense, E. forbesii may have a greater carbon gain than C. sandwicense during sunflecks.  相似文献   

19.
Background and AimsMangrove plants are mostly found in tropical and sub-tropical tidal flats, and their limited distribution may be related to their responses to growth temperatures. However, the mechanisms underlying these responses have not been clarified. Here, we measured the dependencies of the growth parameters and respiration rates of leaves and roots on growth temperatures in typical mangrove species.MethodsWe grew two typical species of Indo-Pacific mangroves, Bruguiera gymnorrhiza and Rhizophora stylosa, at four different temperatures (15, 20, 25 and 30 °C) by irrigating with fresh water containing nutrients, and we measured growth parameters, chemical composition, and leaf and root O2 respiration rates. We then estimated the construction costs of leaves and roots and the respiration rates required for maintenance and growth.Key ResultsThe relative growth rates of both species increased with growth temperature due to changes in physiological parameters such as net assimilation rate and respiration rate rather than to changes in structural parameters such as leaf area ratio. Both species required a threshold temperature for growth (12.2 °C in B. gymnorrhiza and 18.1 °C in R. stylosa). At the low growth temperature, root nitrogen uptake rate was lower in R. stylosa than in B. gymnorrhiza, leading to a slower growth rate in R. stylosa. This indicates that R. stylosa is more sensitive than B. gymnorrhiza to low temperature.ConclusionsOur results suggest that the mangrove species require a certain warm temperature to ensure respiration rates sufficient for maintenance and growth, particularly in roots. The underground temperature probably limits their growth under the low-temperature condition. The lower sensitivity of B. gymnorrhiza to low temperature shows its potential to adapt to a wider habitat temperature range than R. stylosa. These growth and respiratory features may explain the distribution patterns of the two mangrove species.  相似文献   

20.
Photosynthetic and respiratory rates were studied in Cetraria islandica, C. nivalis, and Cladonia rangiferina in the alpine zone of Mt. Washington, New Hampshire. Measurements were made in the field using an infrared gas analyzer; light, temperature, and thallus water content were varied. In all species, considerable reduction in photosynthesis and respiration occurred with drying, more rapidly in photosynthesis than respiration. Optimal photosynthetic rates in all 3 species occurred at 15–20 C with light levels of 1,600 ft-c. Light compensation points ranged from 200 to 350 ft-c. Optimal respiratory rates were attained at 15 C in the 2 species of Cetraria and at 20 C in Cladonia. The data indicate that these wide-ranging, arctic-alpine and arctic-temperate lichens on Mt. Washington are quite well adapted to a moist, foggy environment with cool temperatures and low light levels, conditions which predominate in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号