首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of low dietary rubidium on plasma biochemical parameters and mineral levels in tissues in rats were studied. Eighteen male Wistar rats, weighing about 40 g, were divided into two groups and fed the diets with or without supplemental rubidium (0.54 vs 8.12 mg/kg diet) for 11 wk. Compared to the rats fed the diet with supplemental rubidium, the animals fed the diet without rubidium supplementation had higher urea nitrogen in plasma; lower rubidium concentration in tissues; lower sodium in muscle; higher potassium in plasma, kidney and tibia, and lower potassium in testis; lower phosphorus in heart and spleen; lower calcium in spleen; higher magnesium in muscle and tibia; higher iron in muscle; lower zinc in plasma and testis; and lower copper in heart, liver, and spleen, and higher copper in kidney. These results suggest that rubidium concentration in tissues reflects rubidium intake, and that rubidium depletion affects mineral (sodium, potassium, phosphorus, calcium, magnesium, iron, zinc, and copper) status.  相似文献   

2.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

3.
Mineral (phosphorus, sulfur, potassium, calcium, magnesium, iron, zinc, copper, and manganese) concentrations were measured in plasma, and several tissues from female Wistar rats (young: 3-wk-old; mature: 6-mo-old) were fed on a dietary regimen designed to study the combined or singular effects of age and dietary protein on mineral status. Three diets, respectively, contained 5, 15, and 20% of bovine milk casein. Nephrocalcinosis chemically diagnosed by increased calcium and phosphorus in kidney was prevented in rats fed a 5% protein diet. Renal calcium and phosphorus were more accumulated in young rats than mature rats. A 5% protein diet decreased hemoglobin and blood iron. The hepatic and splenic iron was increased by a 5% protein diet in mature rats but was not altered in young rats. Mature rats had higher iron in brain, lung, heart, liver, spleen, kidney, muscle, and tibia than young rats. A 5% protein diet decreased zinc in plasma and liver. Zinc in tibia was increased with dietary protein level in young rats but was not changed in mature rats. A 5% protein diet decreased copper concentration in plasma of young rats but not in mature rats. Mature rats had higher copper in plasma, blood, brain, lung, heart, liver, spleen, and kidney than young rats. With age, manganese concentration was increased in brain but decreased in lung, heart, liver, kidney, and muscle. These results suggest that the response to dietary protein regarding mineral status varies with age.  相似文献   

4.
We examined zinc (Zn) metabolism in rats given diets containing excess calcium (Ca). Rats were given phytate-free diet containing 5 g Ca/kg (control), 12.5 g Ca/kg, or 25 g Ca/kg for 4 wk in Experiment 1. The dietary treatment did not affect Zn concentration in the plasma, testis, kidney, spleen and liver; however, Zn concentration in the femur and its cortex was significantly higher in rats given diet containing 25 g Ca/kg than in other rats. Rats were given phytate-free diet containing 5 g Ca /kg or 25 g Ca /kg for 4 wk in Experiment 2. After 12-h food deprivation, rats were given a diet extrinsically labeled by 67Zn with dysprosium as a fecal marker for 4 h. Feces were collected from 1 d before administration of the labeled diet to 5 d after administration. Excess Ca did not affect the true absorption of Zn and its endogenous excretion but increased femoral Zn. These results suggest that excess Ca improves Zn bioavailability without affecting Zn absorption when diets do not contain phytate.  相似文献   

5.
K Amemiya  C L Keen  L S Hurley 《Teratology》1986,34(3):321-334
The relationship between 6-mercaptopurine-induced alterations in mineral metabolism and the teratogenic effects of the drug were investigated. Pregnant Sprague-Dawley rats were fed diets containing 4.5, 100, or 1,000 micrograms Zn per 1 g diet. On day 11 of gestation, dams were given intraperitoneal injections of 6-mercaptopurine (27.5 mg/kg). At term, dams fed the 1,000-micrograms Zn per 1 g diet showed fewer drug-induced deleterious effects on reproduction and embryogenesis than did those fed lower levels of zinc. Mineral analysis of maternal and fetal tissues revealed pronounced effects of 6-mercaptopurine on metabolism of zinc, copper, iron, calcium, and magnesium. The results of this study indicate that 6-mercaptopurine teratogenesis may be due in part to drug-induced changes in mineral metabolism.  相似文献   

6.
Effect of dietary iron deficiency on mineral levels in tissues of rats   总被引:3,自引:0,他引:3  
To clarify the influence of iron deficiency on mineral status, the following two synthetic diets were fed to male Wistar rats: a control diet containing 128 micrograms iron/g, and an iron-deficient diet containing 5.9 micrograms iron/g. The rats fed the iron-deficient diet showed pale red conjunctiva and less reactiveness than the rats fed the control diet. The hemoglobin concentration and hematocrit of the rats fed the iron-deficient diet were markedly less than the rats fed the control diet. The changes of mineral concentrations observed in tissues of the rats fed the iron-deficient diet, as compared with the rats fed the control diet, are summarized as follows: . Iron concentrations in blood, brain, lung, heart, liver, spleen, kidney, testis, femoral muscle, and tibia decreased; . Calcium concentrations in blood and liver increased; calcium concentration in lung decreased; . Magnesium concentration in blood increased; . Copper concentrations in blood, liver, spleen and tibia increased; copper concentration in femoral muscle decreased; . Zinc concentration in blood decreased; . Manganese concentrations in brain, heart, kidney, testis, femoral muscle and tibia increased. These results suggest that iron deficiency affects mineral status (iron, calcium, magnesium, copper, zinc, and manganese) in rats.  相似文献   

7.
The effects of a zinc-deficient (ZD) diet on the growth and trace element concentrations of various organs (body hair, liver, kidney, gastrocnemius muscle, and femur) of male rats were studied. Furthermore, these trace element concentrations of the above-mentioned organs in male rats neonatally treated with l-monosodium glutamate (MSG) are compared with those of the ZD rats. The ZD rats showed growth retardation compared to rats fed a zincadequate diet (controls). The feed efficiency of the ZD rats was only one-fifth of the controls. This is one reason why the ZD rats showed retarded growth. Body hair concentration of zinc (Zn) in the ZD rats was significantly lower than in the controls. On the other hand, copper (Cu), manganese (Mn), and iron (Fe) concentrations in the body hair were significantly higher in the ZD rats than in the controls. Moreover, the apparent absorption rate of these trace elements was significantly higher in the ZD rats than in the controls. The reason for the decrease in Zn contents of the body hair in the ZD rats is probably the reduced dietary Zn intake. Liver and kidney concentrations of Zn in the ZD rats were significantly lower than in the controls. Femur Zn concentrations in the control rats showed higher values than in the ZD rats. Cu and Mn concentrations in the femur in the ZD rats showed higher values than in the controls. Ninh et al. suggested that growth retardation in ZD rats is the result of a decrease in protein biosynthesis. The results of this study support their theory. The reasons for the use of MSG-treated rats in this study are as follows. (1) We reported on the head hair concentration of the above-mentioned elements from pituitary dwarfism (human growth hormone deficient) patients. In that study, the sample was restricted to head hair from pituitary dwarfism patients. More detailed physiological data may be obtained by the used of MSG-treated rats. (2) We took notice of many resemblances between the pituitary dwarfism patients and the MSG-treated rats in morbidity. The MSG-treated rats showed a severe growth retardation compared to NaCl-treated controls. Zn concentration in the body hair was significantly higher in the MSG-treated rats than in the NaCl-treated controls. For the other trace element concentrations, there were no significant differences between the MSG-treated rats and the NaCl-treated controls. The concentrations of these trace elements in the liver of the MSG-treated rats were lower than in the NaCl-treated controls. In the MSG-treated rats, the concentrations of Zn and Cu in the femur were higher than in the NaCl-treated controls. However, the Fe concentration in the femur of the MSG-treated rats showed lower values compared with NaCl-treated controls. The results of this study suggest that the reduction of rat growth hormone (rGH) secretion and/or its synthesis are a consequence of the impairment of rGH anabolic effects. Furthermore it indicates that MSG-treated rats are useful as an in vivo model for the study of the effects of GH.  相似文献   

8.
We investigated the effect of magnesium supplementation on zinc distribution in rats given excess calcium as carbonate. Rats were given a control diet (5 g/kg calcium and 0.5 g/kg magnesium), a high calcium diet (HC, 25 g/kg calcium and 0.5 g/kg magnesium) or the high calcium diet supplied with magnesium (HCM, 25 g/kg calcium and 2.5 g/kg magnesium) for 4 weeks. Calcium carbonate and magnesium oxide were used for increasing these mineral concentrations in diets. Although feed intake did not differ among the groups, the excess calcium suppressed feed efficiency, irrespective of dietary magnesium concentration. Femoral magnesium concentration was lower in the HC group than in the control and the HCM groups. Femoral zinc concentration was higher in the HC group and the HCM group than in the control group. The zinc concentration in the kidney was lower in the HC group and the HCM group than in the control group. The excess calcium did not affect zinc concentration in plasma and other tissues such as the liver, testis, and spleen, irrespective of dietary magnesium. These results suggest that the increasing bone zinc and the decreasing renal zinc do not result from magnesium insufficiency in rats given excess calcium as carbonate.  相似文献   

9.
The aim of this study was to assess the metabolic and physiological changes in rats fed a diet high in fat, fructose, and salt, and with excess iron level. Mineral status was also estimated. Wistar rats were assigned to groups fed either a standard control diet (C) or a diet high in fat, fructose, and salt. The noncontrol diets contained either normal (M) or high level (MFe) of iron. After 6 weeks, the length and weight of the rats were measured, and the animals were euthanized. The kidneys and gonads were collected, and blood samples were taken. Serum levels of insulin, nitric oxide, and iron were measured. The iron, zinc, copper, and calcium concentrations of tissues were determined. It was found that the M diet led to a significant increase in the relative kidney mass of the rats compared with the control group. Among the rats fed the M diet, markedly higher serum level of iron and lower levels of zinc and copper were observed in tissues, while significantly higher calcium levels were found in the gonads. The MFe diet resulted in decreased obesity index, insulin level, and nitric oxide serum concentration in the rats, when compared with both the M and C diets. The high iron level in the modified diet increased the relative mass of the gonads. The excess iron level in the diet disturbed the zinc, copper, and calcium status of tissues. The decrease in insulin and nitric oxide in rats fed the diet high in iron, fat, fructose, and salt was associated with disorders of zinc, copper, and calcium status, as well as with an increase in the relative mass of the gonads.  相似文献   

10.
The rate of zinc (Zn) release from rat erythrocytes incubated in buffers containing a variety of chelators was measured. Only o-phenanthroline, 8-hydroxyquinoline-5-sulfonate, and EDTA caused detectable Zn release. The relationship between the rate of this release in the presence of o-phenanthroline and Zn status was determined in rats. Rats were fed one of the following: a modified AIN-76 diet providing 46 mumol (3 mg) Zn per kg of diet, a pair-fed diet providing 459 mumol (30 mg)/kg, or the previous diet fed ad lib. Animals were sacrificed at 2-wk intervals for 12 wk, and the Zn efflux rate, plasma, liver, and femur Zn concentrations were determined. The efflux rate was lower in erythrocytes taken from the rats fed the low-Zn diet. The efflux rate was also well correlated with femur Zn (r = 0.509, n = 98, p < 0.0001). A poorer correlation was observed with plasma Zn in the rats. Correlations also were determined between efflux rates and plasma Zn levels in human subjects. There was a significant correlation only in the males. In was concluded that the Zn efflux rate from erythrocytes incubated in the presence of o-phenanthroline is related to Zn status but is not sensitive enough to be a useful index of this status.  相似文献   

11.
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.  相似文献   

12.
Different zinc (Zn) compounds have unique properties that may influence the amount of Zn absorbed particularly in the presence of phytic acid (PA), a common food component that binds Zn and decreases its bioavailability. In this study, 30-day-old male rats (n = 12/diet group) were fed diets supplemented with PA (0.8%) and low levels (8 mg Zn/kg diet) of inorganic (Zn oxide, Zn sulphate) or chelated (Zn gluconate, Zn acetate, Zn citrate, EDTA disodium Zn, Zn orotate) Zn compounds for 5 weeks. Two control groups were fed diets supplemented with low or normal (30 mg Zn/kg diet) Zn (as Zn oxide) without added PA. Control rats fed the low Zn oxide diet showed depressed Zn status. Addition of PA to this diet exacerbated the Zn deficiency in rats. Growth (body weight gain and femur length) and Zn concentrations in plasma and tissues were similar in rats fed Zn oxide, Zn sulphate, Zn gluconate, Zn acetate, Zn citrate or Zn orotate. Rats fed EDTA disodium Zn showed enhanced growth compared to rats fed Zn oxide or Zn gluconate and had higher Zn concentrations in plasma and femur compared to rats fed all other Zn compounds. Only the haematological profile of rats fed EDTA disodium Zn did not differ from control rats fed normal Zn. These data indicate that in rats fed a high PA diet, bioavailability of commonly used inorganic or chelated Zn compounds does not differ appreciably, but Zn supplied as an EDTA disodium salt has superior bioavailability.  相似文献   

13.
The aim of this study was to determine the zinc, iron, copper, calcium, phosphorus, and magnesium levels in blood serum and zinc and copper levels in hair of dogs with canine visceral leishmaniasis. The serum zinc and iron levels were found to be significantly lower in diseased dogs than those of healthy controls. Serum copper levels were significantly higher, whereas no significant differences were observed for calcium, phosphorus, and magnesium. There were no significant differences in the zinc and copper levels in hair. Our results show that the serum zinc, iron, and copper levels are altered in canine leishmaniasis.  相似文献   

14.
The hypothesis was tested that there are interactions of marginal copper and vitamin A deficiency regarding iron and zinc status. Copper restriction (1 vs 5 mg Cu/kg diet) significantly lowered copper concentrations in plasma and tissues of rats and reduced blood hemoglobin, hematocrit, and iron concentrations in tibia and femur, but raised iron concentrations in liver. Vitamin A restriction (0 vs 4000 IU vitamin A/kg diet) reduced plasma retinol concentrations and induced a fall of blood hemoglobin and hematocrit. Neither copper nor vitamin A restriction for up to 42 d affected feed intake and body wt gain. There were no interrelated effects of vitamin A and copper deficiency on iron status. Copper deficiency slightly depressed liver, spleen, and kidney zinc concentrations. Vitamin A deficiency lowered zinc concentrations in heart, but only when the diets were deficient in copper.  相似文献   

15.
We studied the effects of dietary inclusion of freeze-dried goat and cow milk on the utilization of copper, zinc and selenium, and on the metabolic fate of copper and zinc, in rats using a standard (non-milk) control diet recommended by the American Institute of Nutrition and diets based on goat or cow milk. For animals given the goat milk diet, the apparent digestibility coefficient (ADC) of copper is similar to that obtained with the standard diet and higher than that in animals given the cow milk diet. The copper balance was higher among the rats given the goat milk and the standard diets than among those given cow milk. The ADC and retention of zinc and selenium were higher for the goat milk diet than for the other two diets. The copper content in the kidneys and in the femur was greater when the animals consumed a goat milk diet than a cow milk diet. Zn deposits in femur, testes, liver, kidney, heart and longissimus dorsi muscle were greatest with the goat-milk diet, followed by the standard diet and were lowest for the rats given cow-milk diet. This study shows that the goat-milk has an important and beneficial effect on the bioavailability of copper, zinc and selenium.  相似文献   

16.
Plasma zinc (Zn), copper (Cu), and magnesium (Mg) concentrations, copper/zinc ratio, and selenium (Se) status were studied in 44 vegetarians (22 males and 22 females) and their age- and sex-matched nonvegetarians in the Bratislava region (Slovakia). Vegetarians had statistically significant lower levels of plasma Zn and Cu than nonvegetarians, which may be the result of lower bioavailability of Zn and Cu from this type of diet. No differences in plasma Mg levels were found between vegetarians and nonvegetarians. Se status, as expressed by plasma and erythrocyte concentrations and plasma and erythrocyte glutathione peroxidase activities (GPx), was significantly lower in vegetarians when compared to nonvegetarians. In the series as a whole, there were significantly higher correlations between plasma and erythrocyte Se concentrations and between plasma and erythrocyte GPx activities. Significant positive correlations were also found between plasma Se concentrations and erythrocyte GPx activities, and between erythrocyte Se concentrations and erythrocyte GPx activities. A vegetarian diet does not provide a sufficient supply of essential antioxidant trace elements, like Zn, Cu, and especially Se. Se supplementation should be recommended to this risk group of the population.  相似文献   

17.
The purpose of this study was to investigate the effect of zinc lipoate and zinc sulfate on zinc availability in growing rats. 6 . 6 male albino rats were fed purified diets based on corn starch, egg albumen, sucrose, soy bean oil and cellulose over a 4-week period (diet Ia: 10 mg Zn/kg as zinc sulfate, diet Ib: 10 mg Zn/kg as zinc lipoate, diet IIa: 10 mg Zn/kg as zinc sulfate +0.4% phytic acid, diet IIb: 10 mg Zn/kg as zinc lipoate +0.4% phytic acid, diet IIIa: 20 mg Zn/kg as zinc sulfate + 0.4% phytic acid, diet IIIb: 20 mg Zn/kg as zinc lipoate + 0.4% phytic acid). Zinc lipoate and zinc sulfate both proved to be highly available zinc sources. When 0.4% phytic acid were present in the diets, apparent zinc absorption was generally depressed but was higher from zinc lipoate in tendency than from zinc sulfate. Comparable results were evident for femur zinc, plasma zinc and metallothionein concentrations in liver tissues. This indicates that zinc lipoate could be a valuable zinc source under conditions of low zinc availability. Nevertheless the absence or presence of phytic acid was a more important factor influencing zinc availability than the type of zinc source investigated.  相似文献   

18.
Phytic acid was extracted from sweet potato (Ipomoea batatas) and fed to Wistar rats with or without zinc for 3 weeks. Animals were then sacrificed and bone and faecal minerals were assessed. The ultra-structure of the bones was examined via scanning electron microscopy. Phytic acid extract or commercial phytic acid supplemented diets (D + Zn + PE or D + PE) displayed reduced bone calcium levels (101.27 ± 59.11 and 119.27 ± 45.36 g/kg) compared to the other test groups. Similarly, reduced calcium were observed in the control groups (D + Zn and D) fed formulated diets with or without zinc supplementation (213.14 ± 15.31 and 210 ± 6.88 g/kg) compared to the other test groups. The group fed supplemented commercial phytic acid diet (D + CP) demonstrated the lowest femur magnesium (3.72 ± 0.13 g/kg) while the group fed phytic acid extract supplementation (D + PE) recorded the highest level (4.84 ± 0.26 g/kg) amongst the groups. Femur iron was highest in the group fed commercial phytic acid supplemented diet (D + CP −115.74 ± 2.41 g/kg) compared to the other groups. Faecal magnesium levels were significantly higher in the two test groups fed phytic acid extract with or without zinc (D + Zn + PE or D + PE) compared to all other groups. All the groups which had phytic acid supplemented diets had significantly thinner bone in the trabecular region, compared to the groups fed formulated diet or zinc supplemented formulated diet (D or D + Zn). These observations suggest that the consumption of foods high in phytic acid may contribute to a reduction in the minerals available for essential metabolic processes in rats.  相似文献   

19.
To clarify the influence of dietary tin deficiency on growth and mineral status, the following two different synthetic diets were fed to male Wistar rats: group 1—a diet containing 1.99 μg tin/g; group 2—a diet containing 17 ng tin/g. The rats in group 2 showed poor growth, lowered response to sound, and alopecia, with decreased food efficiency compared with rats in group 1. The changes of mineral concentrations in tissues observed in group 2, compared with group 1, are summarized as follows: calcium concentration in lung increased; magnesium concentration in lung decreased; iron concentrations in spleen and kidney increased; iron concentration in femoral muscle decreased; zinc concentration in heart decreased; copper concentrations in heart and tibia decreased; manganese concentrations in femoral muscle and tibia decreased. These results suggest that tin may be essential for rat growth.  相似文献   

20.
Gilthead were fed three diets. Diet A was the control diet, whereas diets B and C were supplemented with 300 and 900 mg Zn/kg, respectively. Fish fed with diet C, at the end of the experiment, showed the lowest weight. Zinc concentrations presented the higher values in gills, liver, and kidney. Muscle and brain had the lower mean values and showed a tight control of zinc levels. These results reinforce the hypothesis that zinc in the CNS should be strictly controlled in order to maintain the functional role of the metal. Significant differences in tissue zinc concentrations were obtained between fish fed different amounts of zinc, the metal concentrations being higher in tissues of fish fed diet C. The tissue decrease of zinc, found at the end of the experiment, may depend on a lower feed consumption or on different zinc requirements during the cold season. These changes, even if not univocal among the three diets, may be associated with the life cycle of fish. Furthermore, copper concentrations were little affected by the different concentrations of zinc in the three diets; liver and kidney presented the highest concentrations; liver showed a significant decrease in copper content at the end of the experiment. We conclude that: zinc concentrations of the diet may affect the gilthead weights and the tissual metal content; and zinc concentrations in the diets, depending on the growth rate, may be varied depending on the season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号