首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anthranilate synthase of Agmenellum quadruplicatum, a unicellular species of blue-green bacteria, consists of two nonidentical subunits. A 72,000 dalton protein has aminase activity but is incapable of reaction with glutamine (amidotransferase) unless a second protein (18,000 molecular weight) is present. The small subunit was first detected through its ability to complement a partially purified aminase subunit from Bacillus subtilis to produce a hybrid complex capable of amidotransferase function. Conditions for the function of the heterologous complex were less stringent than for the homologous A. quadruplicatum complex. A reducing agent such as dithiothreitol stabilizes the A. quadruplicatum aminase subunit and is obligatory for amidotransferase function. L-Tryptophan feedback inhibits both the aminase and amidotransferase reactions of anthranilate synthase; Ki values of 6 X 10(-8) M for the amidotransferase activity and 2 X 10(-6) M for the aminase activity were obtained. The Km value calculated for ammonia (2.2 mM) was more favorable than the Km value glutamine (13 mM). Likewise, the Vmax of anthranilate synthase was greater with ammonia than with glutamine. Starvation of a tryptophan auxotroph results in a threefold derepression of the aminase subunit, but no corresponding increase in the small 18,000 M subunit occurs. While microbial anthranilate synthase complexes are remarkably similar overall, the relatively good aminase activity of the A. quadruplicatum enzyme may be of physiological significance in nature.  相似文献   

2.
The amide group of glutamine is a source of nitrogen in the biosynthesis of a variety of compounds. These reactions are catalyzed by a group of enzymes known as glutamine amidotransferases; two of these, the glutamine amidotransferase subunits of p-aminobenzoate synthase and anthranilate synthase have been studied in detail and have been shown to be structurally and functionally related. In some micro-organisms, p-aminobenzoate synthase and anthranilate synthase share a common glutamine amidotransferase subunit. We report here the primary DNA and deduced amino acid sequences of the p-aminobenzoate synthase glutamine amidotransferase subunits from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. A comparison of these glutamine amidotransferase sequences to the sequences of ten others, including some that function specifically in either the p-aminobenzoate synthase or anthranilate synthase complexes and some that are shared by both synthase complexes, has revealed several interesting features of the structure and organization of these genes, and has allowed us to speculate as to the evolutionary history of this family of enzymes. We propose a model for the evolution of the p-aminobenzoate synthase and anthranilate synthase glutamine amidotransferase subunits in which the duplication and subsequent divergence of the genetic information encoding a shared glutamine amidotransferase subunit led to the evolution of two new pathway-specific enzymes.  相似文献   

3.
We have determined the DNA sequence of the distal 148 codons of trpE and all of trpG in Pseudomonas aeruginosa. These genes encode, respectively, the large and small (glutamine amidotransferase) subunits of anthranilate synthase, the first enzyme in the tryptophan synthetic pathway. The sequenced region of trpE is homologous with the distal portion of E. coli and Bacillus subtilis trpE, whereas the trpG sequence is homologous to the glutamine amidotransferase subunit genes of a number of bacterial and fungal anthranilate synthases. The two coding sequences overlap by 23 bp. Codon usage in these Pseudomonas genes shows a marked preference for codons ending in G or C, thereby resembling that of trpB, trpA, and several other chromosomal loci from this species and others with a high G + C content in their DNA. The deduced amino acid sequence for the P. aeruginosa trpG gene product differs to a surprising extent from the directly determined amino acid sequence of the glutamine amidotransferase subunit of P. putida anthranilate synthase (Kawamura et al. 1978). This suggests that these two proteins are encoded by loci that duplicated much earlier in the phylogeny of these organisms but have recently assumed the same function. We have also determined 490 bp of DNA sequence distal to trpG but have not ascertained the function of this segment, though it is rich in dyad symmetries.   相似文献   

4.
The multifunctional enzyme complex, anthranilate synthase from Neurospora crassa, irreversibly loses its glutamine-dependent anthranilate synthase activity on exposure to the reactive glutamine analogs DON and azaserine. Inactivation depends on the presence of the substrate chorismate, is enhanced by the cofactor Mg+2, and is antagonized by glutamine. Inactivation correlates well with the incorporation of [14C]DON into the protein with modification localized to the β subunit (Mr 84,000) of the complex, demonstrating directly that the β subunit provides the glutamine binding site for the glutamine-dependent anthranilate synthase reaction. The slower and less extensive loss of ammonia-dependent anthranilate synthase activity indicates that maximum expression of the ammonia-dependent anthranilate synthase activity by the α subunit also depends on the interaction with an active glutamine amidotransferase domain of the β subunit.  相似文献   

5.
p-Aminobenzoate (PABA) synthase from Bacillus subtilis is an aggregate composed of two nonidentical subunits and has the following properties. (i) In crude extracts this enzyme catalyzes the formation of PABA in the presence of chorismate and either glutamine (amidotransferase) or ammonia (aminase). The amidotransferase activity is about 5- to 10-fold higher than the aminase activity and is stable for at least 1 week when frozen at -70 C. (II) Although no divalent cation requirement could be demonstrated with crude extracts, 2 mM ethylene-diaminetetraacetic acid completely inhibits both activities. (iii) After ammonium sulfate fractionation both the aminase and amidotransferase activities require Mg2+ and guanosine in addition to the substrates indicated above for optimal activity. The guanosine requirement can be replaced by guanosine 5'-monophosphate, guanosine 5'-diphosphate, and guanosine 5'-triphosphate but not by guanine, adenosine 5'-triphosphate, uridine 5'-triphosphate, cytidine 5'-triphosphate, thymidine 5'-triphosphate, inorganic phosphate, and phosphoribosylpyrophosphate. Furthermore, at a pH above 7.4 or below 6.4 activity is rapidly lost a 4 C, or -60 C. (IV) The enzyme is composed of two non-identical subunits, designated subunit A and subunit X. Subunit A has an estimated molecular weight of 31,000, whereas subunit X has an estimated molecular weight of 19,000. Subunit A has aminase activity but no amidotransferase activity; a mutation at the pabA locus results in the loss of PABA synthase activity. Subunit X, which is also a component of the anthranilate synthase complex, has no PABA synthase activity itself but complexes with subunit A to give an AX aggregate that can use glutamine as a substrate. (v) The molecular weight of the AX complex has been estimated at 50,000, suggesting a 1:1 ratio of subunits. (vi) The enzyme is readily associated and dissociated.  相似文献   

6.
Enzymes of the Tryptophan Pathway in Three Bacillus Species   总被引:10,自引:8,他引:2       下载免费PDF全文
The tryptophan synthetic pathway was characterized in three species of Bacillus, B. subtilis, B. pumilus, and B. alvei. They share the common features of a pathway which is subject to tryptophan repression, contains no unexpected complexes among the five enzymes, exhibits dissociable anthranilate synthase enzymes which do not require phosphoribosyl transferase for amidetransfer activity, contains separate indoleglycerol phosphate synthase and phosphoribosylanthranilate isomerase enzymes, and contains similar tryptophan synthetase multimers. In looking at these characteristics in detail however, differences among the three species became apparent, as, for example, in the complementation observed between the alpha and beta(2) components of tryptophan synthetase, and the dissociation patterns of the large and small components of anthranilate synthase. The results demonstrate some pitfalls in attempting to compare multimeric enzymes in crude extracts from different organisms.  相似文献   

7.
The anthranilate synthase aggregate from Bacillus subtilis is composed of two nonidentical subunits, denoted E and X, which are readily associated or dissociated. A complex of subunit E and X can utilize glutamine or ammonia as substrates in the formation of anthranilate. Partially purified subunit E is capable of using only ammonia as the amide donor in the anthranilate synthase reaction. The stability of the EX complex is strongly influenced by glutamine and by the concentrations of the subunits. Glutamine stabilizes the aggregate as a molecular species in which the velocity of the glutamine-reactive anthranilate synthase is a linear function of protein concentration. In the absence of glutamine the aggregate is readily dissociated following dilution of the extract; that is, velocity concaves upward as a function of increasing protein concentration. Reassociation of the EX complex is characterized by a velocity lag (or hysteretic response) before steady-state velocity for the glutamine-reactive anthranilate synthase is reached. We propose that association and dissociation of the anthranilate synthase aggregate may be physiologically significant and provide a control mechanism whereby repression or derepression causes disproportionate losses or gains in activity by virtue of protein-protein interactions between subunits E and X.  相似文献   

8.
List F  Bocola M  Haeger MC  Sterner R 《Biochemistry》2012,51(13):2812-2818
The glutamine amidotransferase (GATase) family comprises enzyme complexes which consist of glutaminase and synthase subunits that catalyze in a concerted reaction the incorporation of nitrogen within various metabolic pathways. An important feature of GATases is the strong stimulation of glutaminase activity by the associated synthase. To understand the mechanism of this tight activity regulation, we probed by site-directed mutagenesis four residues of the glutaminase subunit TrpG from anthranilate synthase that are located between the catalytic Cys-His-Glu triad and the synthase subunit TrpE. In order to minimize structural perturbations induced by the introduced exchanges, the amino acids from TrpG were substituted with the corresponding residues of the closely related glutaminase HisH from imidazole glycerol phosphate synthase. Steady-state kinetic characterization showed that, in contrast to wild-type TrpG, two TrpG variants with single exchanges constitutively hydrolyzed glutamine in the absence of TrpE. A reaction assay performed with hydroxylamine as a stronger nucleophile replacing water and a filter assay with radiolabeled glutamine indicated that the formation of the thioester intermediate is the rate-limiting step of constitutive glutamine hydrolysis. Molecular dynamics simulations with wild-type TrpG and constitutively active TrpG variants suggest that the introduced amino acid exchanges result in a distance reduction between the active site Cys-His pair, which facilitates the deprotonation of the sulfhydryl group of the catalytic cysteine and thus enables its nucleophilic attack onto the carboxamide group of the glutamine side chain. We propose that native TrpG in the anthranilate synthase complex is activated by a similar mechanism.  相似文献   

9.
Prototrophic revertants of a trpD deletion mutant that lacks the glutamine amidotransferase domain of the bifunctional component II subunit of the anthranilate synthetase-phosphoribosyltransferase complex have been found to arise by the occurrence of sublethal missense mutations in either the pheA or tyrA loci. Such suppressor mutations were obtained directly by mutation of the wild-type pheA gene as well as indirectly by partial reversion of a variety of nonleaky pheA and tyrA mutations. The suppressor strains have only a portion of the normal level of the pheA or tyrA enzyme activity and thus experience a partial limitation in the synthesis of phenylalanine or tyrosine. This limitation leads to a relaxation of end-product regulation of the phenylalanine- or tyrosine-specific enzymes of the common aromatic pathway and to the overproduction of the branch point intermediate, chorismic acid, which is one of the substrates of the anthranilate synthetase reaction. It is proposed that the high intracellular level of chorismic acid acts to elevate the non-physiological NH3-dependent anthranilate synthetase activity of the component I subunit, thereby eliminating the need for the glutamine amidotransferase activity of the component II subunit. Consistent with this is the finding that phenylalanine and tyrosine are specific inhibitors of growth of the pheA and tyrA suppressor strains, respectively, causing a shutdown of the overproduction of chorismic acid by reestablishing normal end-product control of the common pathway.  相似文献   

10.
Intergeneric Complementation of Anthranilate Synthase Subunits   总被引:2,自引:1,他引:1       下载免费PDF全文
Partially purified subunits of anthranilate synthase were prepared from Bacillus subtilis and Pseudomonas aeruginosa. The large component from B. subtilis (I(B)) complements well with the small component from P. aeruginosa (II(P)) to reconstitute a glutamine-reactive anthranilate synthase. This interaction can be demonstrated with crude extracts from a B. subtilis trpX mutant and a P. aeruginosa trpA mutant. Complementation was also observed with the large component from P. aeruginosa (I(P)) and the small subunit from B. subtilis (II(B)). At saturation the heterologous complex I(B)II(P) has 93% of the activity of the homologous complex I(B)II(B), whereas the hybrid I(P)II(B) is only 22% as active as the homologous complex I(P)II(P).  相似文献   

11.
12.
Pyridoxal 5′-phosphate (PLP) is required as a cofactor by many enzymes. The predominant de novo biosynthetic route is catalyzed by a heteromeric glutamine amidotransferase consisting of the synthase subunit Pdx1 and the glutaminase subunit Pdx2. Previously, Bacillus subtilis PLP synthase was studied by X-ray crystallography and complex assembly had been characterized by isothermal titration calorimetry. The fully assembled PLP synthase complex contains 12 individual Pdx1/Pdx2 glutamine amidotransferase heterodimers. These studies revealed the occurrence of an encounter complex that is tightened in the Michaelis complex when the substrate l-glutamine binds. In this study, we have characterized complex formation of PLP synthase from the malaria-causing human pathogen Plasmodium falciparum using isothermal titration calorimetry. The presence of l-glutamine increases the tightness of the interaction about 30-fold and alters the thermodynamic signature of complex formation. The thermodynamic data are integrated in a 3D homology model of P. falciparum PLP synthase. The negative experimental heat capacity (Cp) describes a protein interface that is dominated by hydrophobic interactions. In the absence of l-glutamine, the experimental Cp is less negative than in its presence, contrasting to the previously characterised bacterial PLP synthase. Thus, while the encounter complexes differ, the Michaelis complexes of plasmodial and bacterial systems have similar characteristics concerning the relative contribution of apolar/polar surface area. In addition, we have verified the role of the N-terminal region of PfPdx1 for complex formation. A “swap mutant” in which the complete αN-helix of plasmodial Pdx1 was exchanged with the corresponding segment from B. subtilis shows cross-binding to B. subtilis Pdx2. The swap mutant also partially elicits glutaminase activity in BsPdx2, demonstrating that formation of the protein complex interface via αN and catalytic activation of the glutaminase are linked processes.  相似文献   

13.
The anthranilate synthetase of Clostridium butyricum is composed of two nonidentical subunits of unequal size. An enzyme complex consisting of both subunits is required for glutamine utilization in the formation of anthranilic acid. Formation of anthranilate will proceed in the presence of partially pure subunit I provided ammonia is available in place of glutamine. Partially pure subunit II neither catalyzes the formation of anthranilate nor possesses anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase activity. The enzyme complex is stabilized by high subunit concentrations and by the presence of glutamine. High KCl concentrations promote dissociation of the enzyme into its component subunits. The synthesis of subunits I and II is coordinately controlled with the synthesis of the enzymes mediating reactions 4 and 5 of the tryptophan pathway. When using gel filtration procedures, the molecular weights of the large (I) and small (II) subunits were estimated to be 127,000 and 15,000, respectively. Partially pure anthranilate synthetase subunits were obtained from two spontaneous mutants resistant to growth inhibition by 5-methyltryptophan. One mutant, strain mtr-8, possessed an anthranilate synthetase that was resistant to feedback inhibition by tryptophan and by three tryptophan analogues: 5-methyl-tryptophan, 4- and 5-fluorotryptophan. Reconstruction experiments carried out by using partially purified enzyme subunits obtained from wild-type, mutant mtr-8 and mutant mtr-4 cells indicate that resistance of the enzyme from mutant mtr-8 to feedback inhibition by tryptophan or its analogues was the result of an alteration in the large (I) subunit. Mutant mtr-8 incorporates [(14)C]tryptophan into cell protein at a rate comparable with wild-type cells. Mutant mtr-4 failed to incorporate significant amounts of [(14)C]tryptophan into cell protein. We conclude that strain mtr-4 is resistant to growth inhibition by 5-methyltryptophan because it fails to transport the analogue into the cell. Although mutant mtr-8 was isolated as a spontaneous mutant having two different properties (altered regulatory properties and an anthranilate synthetase with altered sensitivity to feedback inhibition), we have no direct evidence that this was the result of a single mutational event.  相似文献   

14.
The trifunctional beta-subunit of anthranilate synthase complex of Neurospora crassa has been purified from a mutant which produces no detectable alpha-subunit. The isolated beta-subunit appeared to be a highly asymmetric dimer with a s20,w of 7.35 and an apparent molecular weight of 200,000 as determined by gel filtration on Sephacryl S-300 compared with a monomer molecular weight of approximately 84,000 Da as determined by sodium dodecyl sulfate-gel electrophoresis. The purified subunit was cleaved by elastase, trypsin, or chymotrypsin into fragments which retained the three enzyme activities. After elastase digestion, two active fragments were separated by gel filtration and ion exchange chromatography. A 30,000-Da fragment, which behaved as a monomer on gel filtration, interacted with free alpha-subunit to produce glutamine-dependent anthranilate synthase activity. A second 56,000-Da fragment, which behaved as an asymmetric dimer (apparent molecular weight 140,000) on gel filtration, retained both N-(5'-phosphoribosyl)anthranilate isomerase and indole-3-glycerol phosphate synthase activity. The failure to detect an NH2-terminal amino acid residue on either the intact beta-subunit or the 30,000-Da complementing fragment, while the 56,000-Da fragment possessed an NH2-terminal histidine residue, indicated that the complementing fragment was derived from the NH2-terminal sequence of the beta-subunit.  相似文献   

15.
Two of the enzymes responsible for tryptophan biosynthesis in Bacillus subtilis have been extensively purified. These proteins are indole-3-glycerol phosphate synthase and N-(5'-phosphoribosyl) anthranilate isomerase. By comparison to the non-differentiating enteric bacteria in which these two enzymes are fused into a single polypeptide, the isolation of the indoleglycerol phosphate synthase and phosphoribosyl anthranilate isomerase from B. subtilis has demonstrated that the two proteins are separate species in this organism. The two enzymes were clearly separable by anion-exchange chromatography without any significant loss of activity. Molecular weights were determined for both enzymes by gel filtration and sodium dodecyl sulfate-slab gel electrophoresis, and indicated that the indoleglycerol phosphate synthase is the slightly larger of the two proteins. The minimum molecular weight for indoleglycerol phosphate synthase was 23,500, and that for phosphoribosyl anthranilate isomerase was 21,800. Both enzymes have been examined as to conditions necessary to achieve maximal activity of their individual functions and to maintain that activity.  相似文献   

16.
A strain of Escherichia coli in which the glutamine amidotransferase function (anthranilate synthetase component II) of anthranilate synthetase has been deleted synthesizes tryptophan using NH3-dependent anthranilate synthetase component I (AS-I). In NH3-limited media this strain is a tryptophan auxotroph. Mutants that acquired the capacity to grow in NH3-limited media were isolated. Growth of mutant strains in NH3-limited media correlates with increased AS-I activity. Glutamine-dependent AS activity was not found in any of the mutant strains indicating that another glutamine amidotransferase had not been recruited to function with AS-I.  相似文献   

17.
In Bacillus subtilis, the formation of glutaminyl-tRNA is accomplished by first charging tRNA(Gln) with glutamate, which is then amidated. Glutamine was preferred over asparagine and ammonia as the amide donor in vitro. There is a functional analogy of this reaction to that catalyzed by glutamine synthetase. Homogeneous glutamine synthetase, from either B. subtilis or Escherichia coli, catalyzed the amidotransferase reaction but only about 3 to 5% as well as a partially purified preparation from B. subtilis. Several classes of glutamine synthetase mutants of B. subtilis, however, were unaltered in the amidotransferase reaction. In addition, there was no inhibition by inhibitors of either glutamine synthetase or other amidotransferases. A unique, rather labile activity seems to be required for this reaction.  相似文献   

18.
Studies using Sephadex gel filtration indicated that the alpha and beta 2 components of the Bacillus subtilis tryptophan synthase associate to form complexes under the appropriate conditions of buffer, pH, and temperature. Monovalent cations, glycerol, and the cofactor, pyridoxal-5'-phosphate, were required to maintain and active beta 2 component, and in turn, affected the association of the alpha and beta 2 components. Under conditions that stabilized the individual components during their purification, the affinity of the subunits for each other was weak. Under the same buffer conditions, but at the higher pH of 7.8 which the enzymatic activities are assayed, the individual components readily associated. The substrate serine appeared to affect complex formation but there was no effect from the indole moiety. When the temperature was raised from 4 to 22-25 degrees C, complex formation was observed at both pH 6.6 and 7.8. The results of these experiments are consistent with the formation of alpha beta 2 and alpha 2 beta 2 species as the associated tryptophan synthase complexes of B. subtilis.  相似文献   

19.
Cloning and sequencing analysis of Trp1 gene of Flammulina velutipes   总被引:1,自引:0,他引:1  
The genomic TRP1 gene from basidiomycete Flammulina velutipes was cloned by complementation of yeast Saccharomyces cerevisiae trp1 mutation. Sequencing analysis revealed that the TRP1 gene encoded a single protein consisting of three catalytic functional domains; glutamine amidotransferase, indole-3-glycerol phosphate synthase ) and N-(5'-phosphoribosyl) anthranilate isomerase, in order of NH2-glutamine amidotransferase-indole-3-glycerol phosphate synthase N-(5'-phosphoribosyl) anthranilate isomerase-COOH. The coding sequence of the TRP1 gene was interrupted by a single intron of 48 bases, the position and flanking sequences of which were highly homologous to those of basidiomycete Phanerochaete chrysosporium trpC.  相似文献   

20.
A procedure employed in the purification of anthranilate synthetase component I of Escherichia coli is described. The purified component appears homogeneous by starch gel electrophoresis and by sedimentation analysis. A molecular weight of 60,000 was estimated by gel filtration of Sephadex G-100. This value is consistent with the molecular weight estimated from the sedimentation and diffusion coefficients. Purified anthranilate synthetase component I cannot use glutamine as substrate and thus has no activity in the reaction of chorismate + l-glutamine --> anthranilate; however, it is active when ammonium sulfate is provided as amino donor. Sucrose density gradient analyses showed that ammonium sulfate does not affect the sedimentation velocity of component I. The ultraviolet absorption and fluorescence spectra of the purified component indicated that it contains tryptophan. Peptide pattern and extract complementation evidence suggested that the protein is a single polypeptide chain. Enzyme activity measurements indicated that wild-type E. coli produces equimolar amounts of at least four of the five polypeptides specified by the operon. Purified anthranilate synthetase component I is inhibited by l-tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号