首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+-dependent ATPase of sarcoplasmic reticulum after solubilization with deoxycholate and removal of lipid by gel chromatography exists as a mixture of monomer, dimer, and smaller amounts of higher molecular weight aggregates. The binding capcity of deoxycholate by monomeric and oligomeric forms of the ATPase is 0.3 g/g of protein at pH 8 and ionic strength 0.11. Examination in the analytical ultracentrifuge results in estimates of protein molecular weight of monomer of 115 000 +/- 7000 and of Stokes radius of 50-55 A. The results indicate an asymmetric shape of both delipidated monomer and dimer. Solubilization of ATPase vesicles by deoxycholate at high protein dilutions leads to almost instantaneous loss of ATPase activity. However, ATPase may be solubilized by deoxycholate in presence of phospholipid and sucrose in a temporarily active state. Inactivation appears to be accompanied by delipidation and conformational changes of the protein as evidenced by circular dichroism measurements. Sedimentation velocity examination of enzymatically active preparations of soluble ATPase in presence of phospholipid and sucrose strongly suggests that the major part of enzymatic activity is derived from a monomer with an asymmetric shape. The extent of formation of soluble oligomers by column chromatography was dependent on the exact conditions used for initial solubilization of ATPase. No evidence for differences among monomer and dimer fractions was obtained by isoelectric focusing and amino acid analysis. The results of these studies are compatible with electron-microscopic studies by other authors which suggest that the ATPase has an elongated shape with limited hydrophobic contact with the membrane lipid. A resemblance of delipidated oligomers with the form in which ATPase occurs in the membrane is conjectural at present.  相似文献   

2.
Summary This review summarizes studies on the structural organization of Ca2+-ATPase in the sarcoplasmic reticulum membrane in relation to the function of the transport protein. Recent advances in this field have been made by a combination of protein-chemical, ultrastructural, and physicochemical techniques on membraneous and detergent solubilized ATPase. A particular feature of the ATPase (Part I) is the presence of a hydrophilic head, facing the cytoplasm, and a tail inserted in the membrane. In agreement with this view the protein is moderately hydrophobic, compared to many other integral membrane proteins, and the number of traverses of the 115 000 Dalton peptide chain through the lipid may be limited to 3–4.There is increasing evidence (Part II) that the ATPase is self-associated in the membrane in oligomeric form. This appears to be a common feature of many transport proteins. Each ATPase peptide seems to be able to perform the whole catalytic cycle of ATP hydrolysis and Ca2+ transport. Protein-protein interactions seem to have a modulatory effect on enzyme activity and to stabilize the enzyme against inactivation.Phospholipids (Part III) are not essential for the expression of enzyme activity which only requires the presence of flexible hydrocarbon chains that can be provided e.g. by polyoxyethylene glycol detergents. Perturbation of the lipid bilayer by the insertion of membrane protein leads to some immobilization of the lipid hydrocarbon chains, but not to the extent envisaged by the annulus hypothesis. Strong immobilization, whenever it occurs, may arise from steric hindrance due to protein-protein contacts. Recent studies suggest that breaks in Arrhenius plots of enzyme activity primarily reflect intrinsic properties of the protein rather than changes in the character of lipid motion as a function of temperature.  相似文献   

3.
The kinetics and extent of the fluorescence change induced by Ca2+ interaction with the Ca2+-ATPase from sarcoplasmic reticulum have been compared by stopped flow fluorimetry for three preparations: sarcoplasmic reticulum; purified ATPase in membrane vesicles; and solubilized, delipidated ATPase. The kinetics of Ca2+ release and binding for both purified preparations could be described by a single exponential as has been observed for sarcoplasmic reticulum. The rate and extent of the fluorescence change for the solubilized and membrane-associated preparations are shown to be quite similar to those of the sarcoplasmic reticulum. From these results, it is concluded that all of the Ca2+-induced fluoescence change in sarcoplasmic reticulum originates from the Ca2+-ATPase. In addition, since the change in fluorescence is probably result of a conformational change in the ATPase during the Ca2+ pumping cycle, the results provide additional evidence that monomeric Ca2+-ATPase may be capable of Ca2+ transport since the delipidated preparation is monomeric under the conditions used for these experiments. Finally, it is concluded that phospholipid bilayer is not essential for this conformational change.  相似文献   

4.
Amphipols are short-chain amphipathic polymers designed to keep membrane proteins soluble in aqueous solutions. We have evaluated the effects of the interaction of amphipols with sarcoplasmic reticulum Ca(2+)-ATPase either in a membrane-bound or a soluble form. If the addition of amphipols to detergent-solubilized ATPase was followed by removal of detergent, soluble complexes formed, but these complexes retained poor ATPase activity, were not very stable upon long incubation periods, and at high concentrations they experienced aggregation. Nevertheless, adding excess detergent to diluted detergent-free ATPase-amphipol complexes incubated for short periods immediately restored full activity to these complexes, showing that amphipols had protected solubilized ATPase from the rapid and irreversible inactivation that otherwise follows detergent removal. Amphipols also protected solubilized ATPase from the rapid and irreversible inactivation observed in detergent solutions if the ATPase Ca(2+) binding sites remain vacant. Moreover, in the presence of Ca(2+), amphipol/detergent mixtures stabilized concentrated ATPase against inactivation and aggregation, whether in the presence or absence of lipids, for much longer periods of time (days) than detergent alone. Our observations suggest that mixtures of amphipols and detergents are promising media for handling solubilized Ca(2+)-ATPase under conditions that would otherwise lead to its irreversible denaturation and/or aggregation.  相似文献   

5.
In recent years, expression of rabbit sarcoplasmic reticulum (SR) Ca2+-ATPase in heterologous systems has been a widely used strategy to study altered enzymes generated by site-directed mutagenesis. Various eukaryotic expression systems have been tested, all of them yielding comparable amounts of recombinant protein. However, the relatively low yield of recombinant protein obtained so far suggests that novel purification techniques will be required to allow further characterization of this enzyme based on direct ligand-binding measurements.  相似文献   

6.
Sarcoplasmic reticulum Ca2+-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of 45Ca2+. A Ca2+-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca2+. The elution position corresponded to monomeric Ca2+-ATPase. It is concluded that a single Ca2+-ATPase polypeptide chain provides the full structural basis for Ca2+ occlusion.  相似文献   

7.
Microcrystalline arrays of Ca2+-transporting ATPase (EC 3.6.1.38) develop in detergent-solubilized sarcoplasmic reticulum upon exposure to 10-20 mM CaCl2 at pH 6.0 for several weeks at 2 degrees C, in a crystallization medium that preserves the ATPase activity for several months. Of 48 detergents tested, optimal crystallization was obtained with Brij 36T, Brij 56, and Brij 96 at a detergent:protein weight ratio of 4:1 and with octaethylene glycol dodecyl ether at a ratio of 2:1. Similar Ca2+-induced crystalline arrays were obtained with the purified or delipidated Ca2+-ATPase of sarcoplasmic reticulum but at lower detergent:protein ratios. The crystals are stabilized by fixation with glutaraldehyde and persist even after the removal of phospholipids by treatment with phospholipases A or C and by extraction with organic solvents. The crystals obtained so far can be used only for electron microscopy, but ongoing experiments suggest that under similar conditions large ordered arrays may develop that are suitable for x-ray diffraction analysis.  相似文献   

8.
The inhibition of sarcoplasmic reticulumCa2+-ATPase activity by miconazole was dependent on theconcentration of ATP and membrane protein. Half-maximal inhibition wasobserved at 12 µM miconazole when the ATP concentration was 50 µMand the membrane protein was 0.05 mg/ml. When ATP was 1 mM, a lowmicromolar concentration of miconazole activated the enzyme, whereashigher concentrations inhibited it. A qualitatively similar responsewas observed when Ca2+ transport was measured. Likewise,the half-maximal inhibition value was higher when the membraneconcentration was raised. Phosphorylation studies carried out aftersample preequilibration in different experimental settings shed lighton key partial reactions such as Ca2+ binding and ATPphosphorylation. The miconazole effect on Ca2+-ATPaseactivity can be attributed to stabilization of theCa2+-free enzyme conformation giving rise to a decrease inthe rate of the Ca2+ binding transition. The phosphoryltransfer reaction was not affected by miconazole.

  相似文献   

9.
The Ca2+-dependent ATPase activity of sarcoplasmic reticulum was inhibited when membrane vesicles were incubated at 0°C in presence of thiols. 2-mercaptoethanol was the most effective inhibitor from the thiols tested. The effect of 2-mercaptoethanol on the ATPase activity was biphasic; enzyme inhibition originally increased and then decreased with increasing thiol concentration. The inhibitory action of this thiol was significantly higher at low membrane concentrations and the rate of inactivation at 22°C was considerably lower than that at 0°C. Ca2+-ATPase previously inhibited by 2-mercaptoethanol was partially reactivated by incubation with periodate.  相似文献   

10.
Dynamic light scattering studies have been conducted on the delipidated and detergent-removed (Ca2+ + Mg2+)-ATPase protein assemblies. Specific characterization of the state of aggregation and the extent of conformation change upon delipidation and detergent removal has been made. The results show that the prominent species are dimers and tetramers of very globular nature, with axial ratios of less than 2 : 1. The hydrodynamic radii of the dimers and the tetramers are, respectively, 57.5 A and 74.5 A. The globular nature of these observed entities differ from the delipidated ATPase proteins recently obtained (LeMaire, M., Jorgensen, K.E., Roigaard-Petersen, H. and Moller, J.V. (1976) Biochemistry 15, 5805--5812. Present results suggest that upon the removal of detergents from the lipid-free ATPase protein assembly, only a rather limited degree of aggregation takes place. Such a condition is consistent with models of the membrane protein system which has limited regions of hydrophobic contact. Oligomeric assemblies with aqueous channels is a possible active Ca2+ transport model consistent with results of the present data, as well as the data from several other recent studies.  相似文献   

11.
Fractionation of sarcoplasmic reticulum vesicles from rabbit skeletal muscle was performed by solubilization of the vesicles in the presence of deoxycholate, followed by sucrose density gradient centrifugation and gel filtration chromatography. This procedure permitted the isolation of essentially pure Ca2+-ATPase; this enzyme showed ATPase as well as acylphosphatase activity, both activities being clearly enhanced by deoxycholate. The acylphosphatase activity of the purified Ca2+-ATPase was characterized with regard to some kinetic properties, such as pH, Mg2+, Ca2+, and deoxycholate dependence, and substrate affinity, determined in the presence of acetylphosphate, succinylphosphate, carbamylphosphate, and benzoylphosphate; in addition, the stability of both activities was checked in time-course experiments. The main similarities between the two activities, such as the Mg2+ requirement, the deoxycholate activation, and the pH dependence, together with the competitive inhibition of the benzoylphosphatase activity by ATP, the inhibition of both activities by tris(bathophenanthroline)-Fe2+, and the relief of this inhibitory effect by carbonylcyanide-4-trifluoromethoxyphenyl hydrazone support the hypothesis that acylphosphatase and ATPase activities of sarcoplasmic reticulum vesicles reside in the same active site of the enzyme. With regard to possible relationships between acylphosphatase activity of the purified Ca2+-ATPase and “soluble” acylphosphatase present in the 100,000g supernatant fraction, comparison of some kinetic and structural parameters indicate that these two activities are supported by quite different enzymes.  相似文献   

12.
Methods for preparing native scallop sarcoplasmic reticulum vesicles, largely purified membranous scallop sarcoplasmic reticulum Ca2+-ATPase, and nonionic detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase are described. The effect of a range of polyoxyethylene-based detergents on the solubilized Ca2+-ATPase was tested. Decaethylene glycol dodecyl ether (C12E10) supported the highest levels of activity, although C12E8 and C12E9 were more routinely used. Arrhenius plots of Ca2+-ATPase activity, where the assays were carried out with the same pH at all temperatures (7.4), showed a region of nonlinearity at 10 degrees C. A very similar plot was obtained when no compensation was made for pH variation with temperature. Both the break in the Arrhenius plot and the activation energies for the scallop sarcoplasmic reticulum above and below the break were very similar to those found for lobster sarcoplasmic reticulum (Madeira, V. M. C., Antunes-Madeira, M. C., and Carvalho, A. R. (1974) Biochem. Biophys. Res. Commun. 65, 997-1003). The Arrhenius plot of the scallop Ca2+-ATPase in C12E8 no longer showed the nonlinearity at 10-12 degrees C seen with the native sarcoplasmic reticulum, but instead a break now appeared at 20-21 degrees C. This is close to the Arrhenius break temperature of rabbit Ca2+-ATPase in C12E8 and of a perturbation in C12E8 (Dean, W. L. (1982) Biophys. J. 37, 56-57).  相似文献   

13.
The properties of detergents required to substitute the lipid environment of sarcoplasmic reticulum Ca2+-ATPase with retention of good functional properties were determined by the use of a large number of diverse detergents and delipidated enzyme. Detergents having an intermediate chain length (approximately equal to C12) and a polyoxyethylene glycol or carbohydrate polar group were optimal for Ca2+-ATPase function and stabilization, while detergents with short alkyl chain (C8) or bulky head groups and many zwitterionic detergents led to rapid inactivation. Under optimal conditions (including solubilization in the E1 state), stability of delipidated Ca2+-ATPase approximated that obtained by solubilization of Ca2+-ATPase with a layer of bound lipid. Some detergents (in particular long chain members of the Tween family) were characterized by an inadequate interaction with delipidated Ca2+-ATPase, resulting in biphasic inactivation. According to analytical ultracentrifugation and high performance liquid chromatography experiments, the rapid and slow components of biphasic inactivation were due to the formation of monomeric and oligomeric Ca2+-ATPase, respectively. It is concluded that both hydrophobic and polar interactions are important for the detergent effect and that solubilizing detergents of intermediate and short chain length may be bound as a monolayer, differently than the membrane lipid. Long chain detergents cause protein aggregation and, despite their resemblance to natural lipids, are inferior in their activity-retaining properties. The previous use of such detergents to prepare oligomeric Ca2+-ATPase with long term retention of activity (cf. M?ller, J. V., Anderson, J. P., and le Maire, M. (1988) Methods Enzymol. 157, 261-270) is shown to depend on the presence of residual lipid in these preparations.  相似文献   

14.
In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sarcoplasmic reticulum multilayers. In addition, targeting of the Ca(2+)-ATPase to the sarcoplasmic reticulum is discussed.  相似文献   

15.
Phosphorescence of protein tryptophan was analyzed in sarcoplasmic reticulum vesicles, and in the purified Ca2+ transport ATPase in deoxygenated aqueous solutions at room temperature. Upon excitation with light of 295 nm wavelength, the emission maxima of fluorescence and phosphorescence were at 330 nm and at 445 nm, respectively. The phosphorescence decay was multiexponential; the lifetime of the long-lived component of phosphorescence was approximately equal to 22 ms. ATP and vandate significantly reduced the phosphorescence in the presence of either Ca2+ or EGTA; ADP was less effective, while AMP was without effect. The quenching by ATP showed saturation consistent with the idea that the ATP-enzyme complex had a lower phosphorescence yield. Upon exhaustion of ATP, the phosphorescence returned to starting level. Significant quenching of phosphorescence with a decrease in phosphorescence lifetime was also caused by NaNO2, methylvinyl ketone and trichloroacetate, without effect on ATPase activity; this quenching did not show saturation and was therefore probably collisional in nature.  相似文献   

16.
Interactions between transmembrane and cytoplasmic domains of Ca2+-ATPase from sarcoplasmic reticulum (SR) have been studied. To affect the hydrophobic transmembrane domain, we used four amphiphilic steroids - esters of a dibasic acid and 20-oxypregnene. All four steroids contained cholesterol-like nuclei and differed by the structure of side chains. Steroids with carboxyl groups in the side chains inhibited the rates of ATP hydrolysis and Ca2+ transport, whereas a steroid without the carboxyl group did not appreciably affect Ca2+-ATPase function. Fluorimetric titration of FITC-labelled Ca2+-ATPase in SR vesicles by Nd3+ showed that steroids increased the apparent dissociation constant for Nd3+ bound to the hydrolytic site, the potency order of the steroids being the same as for the sterol-induced inhibition of the hydrolytic activity of Ca2+-ATPase. These results suggest structural changes in the active site. Ca2+ transport was inhibited more efficiently by steroids than the hydrolytic activity of the enzyme. This could be partially due to the increase of the membrane passive permeability induced by steroids, which, in turn, reflected the efficiency of the interaction of the steroids with lipid bilayers. The effects of the steroids were largely dependent on their amphiphilicity (the availability of polar groups in regions A and D), the structure of the side chains, and, possibly, on the distance between the molecular polar groups. We suggest that the inhibition of hydrolytic and transport functions of Ca2+-ATPase in the SR membrane is due to the interaction of the steroids with the transmembrane alpha-helical segments.  相似文献   

17.
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling.  相似文献   

18.
Sarcoplasmic reticulum Ca2+-ATPase structure and organization in the membrane has been studied by infrared spectroscopy by decomposition of the amide I band. Besides the component bands assignable to secondary structure elements such as alpha-helix, beta-sheet, etc...., two unusual bands, one at 1,645 cm(-1) in H2O buffer and the other at 1,625 cm(-1) in D2O buffer are present. By perturbing the protein using temperature and limited proteolysis, the band at 1,645 cm(-1) is tentatively assigned to alpha-helical segments located in the cytoplasmic domain and coupled to beta-sheet structure, whereas the band at 1,625 cm(-1) arises probably from monomer-monomer contacts in the native oligomeric protein. The secondary structure obtained is 33% alpha-helical segments in the transmembrane plus stalk domain; 20% alpha-helix and 22% beta-sheet in the cytoplasmic domain plus 19% turns and 6% unordered structure. Thermal unfolding of Ca2+-ATPase is a complex process that cannot be described as a two-state denaturation. The results obtained are compatible with the idea that the protein is an oligomer at room temperature. The loss of the 1,625 cm(-1) band upon heating would be consistent with a disruption of the oligomers in a process that later gives rise to aggregates (appearance of the 1,618 cm(-1) band). This picture would also be compatible with early results suggesting that processes governing Ca2+ accumulation and ATPase activity are uncoupled at temperatures above 37 degrees C, so that while ATPase activity proceeds at high rates, Ca2+ accumulation is inhibited.  相似文献   

19.
The sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) belongs to the group of P-type ATPases, which actively transport inorganic cations across membranes at the expense of ATP hydrolysis. Three-dimensional structures of several transport intermediates of SERCA1a, stabilized by structural analogues of ATP and phosphoryl groups, are now available at atomic resolution. This has enabled the transport cycle of the protein to be described, including the coupling of Ca(2+) occlusion and phosphorylation by ATP, and of proton counter-transport and dephosphorylation. From these structures, Ca(2+)-ATPase gradually emerges as a molecular mechanical device in which some of the transmembrane segments perform Ca(2+) transport by piston-like movements and by the transmission of reciprocating movements that affect the chemical reactivity of the cytosolic globular domains.  相似文献   

20.
Conditions were developed for the long-term stabilization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum, purified Ca2+-ATPase, and purified-delipidated Ca2+-ATPase preparations. The standard storage medium contains 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Preparations stored under these conditions at 2 degrees C in a nitrogen atmosphere retain significant Ca2+-stimulated ATPase activity for periods of 5-6 months or longer when assayed in the presence of asolectin. The same conditions are also conducive for the formation of three-dimensional microcrystals of Ca2+-ATPase. Of the 49 detergents tested for solubilization, optimal crystallization of Ca2+-ATPase was obtained in sarcoplasmic reticulum solubilized with octaethylene glycol dodecyl ether at a detergent/protein weight ratio of 2, and with Brij 36T, Brij 56, and Brij 96 at a detergent/protein ratio of 4. Similar Ca2+-induced crystals of Ca2+-ATPase were obtained with purified or purified delipidated ATPase preparations at lower detergent/protein ratios. The stabilization of the ATPase activity in the presence of detergents is the combined effect of high Ca2+ (20 mM) and a relatively high glycerol concentration (20%). Ethylene glycol, glucose, sucrose, or myoinositol can substitute for glycerol with preservation of ATPase activity for several weeks in the presence of 20 mM Ca2+.Ca2+-induced association between ATPase molecules may be an essential requirement for preservation of enzymatic activity, both in intact sarcoplasmic reticulum and in solubilized preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号