首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A full-length cDNA encoding the goose (Anser anser) leptin receptor (LEPR) was cloned and sequenced. The goose LEPR gene encodes a 1,156-amino acid protein containing a signal peptide, a single transmembrane domain and specific motifs involving putative leptin-binding and signal transduction. The deduced goose LEPR protein shows more than 90% identity to duck and 75% identity to chicken and turkey. Quantitative real-time analysis reveals that the goose LEPR is predominantly expressed in brain. The expression of LEPR in goose adipocytes can be up-regulated by oleic acid in vitro. Moreover, the expression levels of genes, which have been demonstrated to be related to adipocyte differentiation, are down-regulated in LEPR-knockdown adipocytes, indicating LEPR's potential role in adipocyte differentiation in goose.  相似文献   

2.
3.
A cDNA clone was isolated from an Arabidopsis leaf cDNA library that shared a high degree of protein sequence identity with mitochondrial acyl carrier proteins (mtACPs) isolated from Neurospora crassa and bovine heart muscle. The cDNA encoded an 88-amino acid mature protein that was preceded by a putative 35-amino acid presequence. In vitro protein import studies have confirmed that the presequence specifically targets this protein into pea mitochondria but not into chloroplasts. These studies indicated that pea mitochondria were not only able to import and process the precursor protein but also possessed the ability to acylate the mature protein. The mitochondrial localization of this protein, mtACP-1, was confirmed by western blot analysis. Arabidopsis mitochondrial protein extracts contained two cross-reacting bands that comigrated with the mature mtACP-1 and acylated mtACP-1 proteins. The acylated form of mtACP-1 was approximately 4 times more abundant than the unacylated form and appeared to be localized predominantly in the mitochondrial membrane where the unacylated mtACP-1 was present mostly in the matrix fraction. A chloroplast fatty acid synthase system was used, and mtACP-1 was able to function as a cofactor for fatty acid synthesis. However, predominantly short- and medium-chain fatty acids were produced in fatty acid synthase reactions supplemented with mtACP-1, suggesting that mtACP-1 may be causing premature fatty acid chain termination.  相似文献   

4.
The yolk sac carcinoma cell line L2 secretes a chondroitin/dermatan sulfate proteoglycan that has an Mr 10,000 core protein and carries an average of 14 glycosaminoglycan chains. The amino acid sequence of the mature core protein has been determined from cloned cDNA (Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1321-1325). From additional cDNA sequences described in this report we have identified the prepro core protein precursor of the yolk sac carcinoma chondroitin/dermatan sulfate proteoglycan. From the amino acid sequence of the core protein precursor can be deduced the protein processing events in the biosynthesis of the proteoglycan. The amino acid sequence shows that the 104-amino acid mature core protein is processed from a 179-amino acid prepro core protein precursor which, in addition to the mature core protein, contains a 26-amino acid signal peptide as well as a 49-amino acid propeptide. The molecular weight of the prepro core protein predicted from the cDNA sequence (Mr = 18,600) was in good agreement with the molecular weight of the in vitro translation product (Mr = 19,000) of hybrid-selected mRNA. Accordingly, we have designated the proteoglycan core protein PG19. Further analysis of the PG19 mRNA by RNA sequencing confirmed the identification of the core protein translation initiation codon by revealing stop codons in all three reading frames of the upstream mRNA sequence. Primer extension analyses demonstrated that the 5' untranslated sequence of the proteoglycan mRNA is approximately 220 nucleotides in length, which, combined with the length of cDNA clones, accounts for the entire length of the coding sequence of PG19 mRNA from L2 cells. The cDNA sequences presented here establish the complete protein sequence of PG19 and provide evidence of polypeptide processing during the biosynthesis of the proteoglycan core protein.  相似文献   

5.
Mandibular organs (MO) produce a crustacean juvenile hormone, methyl farnesoate (MF). MO activity is negatively regulated by factors, called mandibular organ inhibiting hormones (MOIHs), from the crustacean sinus gland X-organ complex in the eyestalks. Three MOIHs have been isolated previously from the spider crabLibinia emarginata and are characterized as members of the crustacean hyperglycemic hormone (CHH) neuropeptide family. In the research reported here, a full length cDNA sequence of 972 bp of a MOIH was isolated by screening a cDNA library constructed from the eyestalks ofLibinia emarginata. This cDNA sequence encodes a preprohormone peptide with 137 amino acid residues, including a 26-amino acid long signal peptide, a 34-amino acid long precursor peptide, a dibasic peptide, the full length of 72-amino acid long MOIH, and a tri-peptide Gly-Lys-Lys which designates the potential amidation site at the C-terminus of the mature peptide.  相似文献   

6.
In many plant species, one of the most abundant soluble proteins (as judged by two-dimensional polyacrylamide gel electrophoresis) in mitochondria from nongreen tissues is a 40-kD polypeptide that is relatively scarce in mitochondria from photosynthetic tissues. cDNA sequences encoding this polypeptide were isolated from a lambda gt11 cDNA expression library from potato (Solanum tuberosum L.) by screening with a specific antibody raised against the 40-kD polypeptide. The cDNA sequence contains an open reading frame of 1137 nucleotides whose predicted amino acid sequence shows strong homology to an NAD-dependent formate dehydrogenase (EC 1.2.1.2) from Pseudomonas sp. 101. Comparison of the cDNA sequence with the N-terminal amino acid sequence of the mature 40-kD polypeptide suggests that the polypeptide is made as a precursor with a 23-amino acid presequence that shows characteristics typical of mitochondrial targeting signals. The identity of the polypeptide was confirmed by assaying the formate dehydrogenase activity in plant mitochondria from various tissues and by activity staining of mitochondrial proteins run on native gels combined with antibody recognition. The abundance and distribution of this protein suggest that higher plant mitochondria from various nonphotosynthetic plant tissues (tubers, storage roots, seeds, dark-grown shoots, cauliflower heads, and tissues grown in vitro) might contain a formate-producing fermentation pathway similar to those described in bacteria and algae.  相似文献   

7.
8.
9.
Yan A  Zhang L  Tang Z  Zhang Y  Qin C  Li B  Li W  Lin H 《Peptides》2011,32(7):1363-1370
Orexin-A and -B, collectively called orexins, are hypothalamic neuropeptides involved in the regulation of food intake, sleep and energy balance. In this study, the full-length cDNA of prepro-orexin was isolated from the hypothalamus of orange-spotted grouper (Epinephelus coioides) using RT-PCR and RACE. The grouper prepro-orexin cDNA is 711 bp in length and encodes a 149-amino acid precursor protein that contains a 46-amino acid signal peptide, a 43-amino acid mature orexin-A peptide, a 27-amino acid mature orexin-B peptide and a 33-amino acid C terminus of unknown function. The tissue distribution and ontogeny of prepro-orexin were examined by quantitative real-time PCR. We found that the prepro-orexin mRNA is widely expressed in brain and peripheral tissues, with abundant expression in the hypothalamus. During the embryonic development, prepro-orexin mRNA was first detected in neurula stage embryos, and its expression gradually increased during the remainder of embryogenesis. Our analysis of grouper hypothalamic prepro-orexin expression showed that prepro-orexin mRNA levels were greater in the light phase than in the dark phase and increased significantly at meal-time. Intraperitoneal injection of orexin-A caused a dose-related increase in hypothalamus NPY mRNA expression level after 4 h. Orexin-A also increased NPY mRNA expression level from static hypothalamic fragments incubation. Our results imply that orexin may be involved in feeding in the orange-spotted grouper and orexin-A is a stimulator of NPY mRNA expression in vivo and in vitro.  相似文献   

10.
The cDNA encoding p43, a DNA binding protein from pea chloroplasts (ct) that binds to cognate DNA polymerase and stimulates the polymerase activity, has been cloned and characterised. The characteristic sequence motifs of hydroxyproline-rich glyco-proteins (HRGP) are present in the cDNA corres-ponding to the N-terminal domain of the mature p43. The protein was found to be highly O-arabinosylated. Chemically deglycosylated p43 (i.e. p29) retains its binding to both DNA and pea ct-DNA polymerase but fails to stimulate the DNA polymerase activity. The mature p43 is synthesised as a pre-p43 protein containing a 59 amino acid long transit peptide which undergoes stromal cleavage as evidenced from the post-translational in vitro import of the precursor protein into the isolated intact pea chloroplasts. Surprisingly, p43 is found only in pea chloroplasts. The unique features present in the cloned cDNA indicate that p43 is a novel member of the HRGP family of proteins. Besides p43, no other DNA-polymerase accessory protein with O-glycosylation has been reported yet.  相似文献   

11.
cDNAs encoding the entire coding regions of the precursors (p) of rat long chain acyl-CoA (LCAD), short chain acyl-CoA (SCAD) and isovaleryl-CoA dehydrogenase (IVD) have been cloned and sequenced. Three cDNAs for rat liver LCAD together cover a 1440-base pair region. These cDNAs encode the entire 430-amino acid sequence of pLCAD, including the 30-amino acid leader peptide and the 400-amino acid mature LCAD. A single 1773 base pair cDNA for rat SCAD covers the entire coding region (414 amino acids), including the 26-amino acid leader peptide and the 388-amino acid mature peptide. Four identified IVD cDNAs, when combined, encompass a 2104 base region, and encode 424 amino acids including a 30-amino acid leader peptide and the 394-amino acid mature peptide. The identities of all cDNA clones have been confirmed by matching the amino acid sequences predicted from the respective cDNAs to the amino-terminal and tryptic peptide sequences derived from the corresponding purified rat enzyme. Comparison of the sequences of four rat acyl-CoA dehydrogenases, including LCAD, MCAD, SCAD, and IVD, and two of their human counterparts (MCAD and SCAD) reveals a high degree of homology (57 invariant and 92 near invariant residues: 30.6-35.4% of identical residues in pairwise comparisons), suggesting that these enzymes belong to a gene family and have evolved from a common ancestral gene.  相似文献   

12.
A cDNA encoding a putative precursor of prothoracicotropic hormone (PTTH) from the tobacco hornworm, Manduca sexta, was isolated and sequenced. This clone contains an open reading frame encoding a 226-amino acid prepropeptide hormone. The deduced amino acid sequence is composed of a signal sequence, a precursor domain and a mature hormone and shows similarities to the other PTTHs that have been cloned from closely related lepidopteran species, Bombyx mori, Samia cynthia ricini, Antheraea peryni, and Hyalophora cecropia. Although these cDNAs showed slightly less similarities in predicted amino acid sequences, seven cysteine residues and the hydrophobic regions within those mature peptides were conserved. In situ hybridization using a cDNA probe encoding the Manduca PTTH showed that PTTH mRNA was in two pairs of neurosecretory cells in the Manduca brain. The recombinant putative Manduca PTTH produced in E. coli was biologically active, both causing a larval molt in neck-ligated Manduca 4th instar larvae (ED(50)=50 pM) and the adult molt of diapausing Manduca pupae (ED(50)=79 pM), but was unable to stimulate molting of debrained Bombyx pupae.  相似文献   

13.
Two overlapping cDNA clones (1,991 bp and 736 bp, respectively) encoding the precursor of human mitochondrial very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) were cloned and sequenced. The cDNA inserts of these clones together encompass a region of 2,177 bases, encoding the entire protein of 655 amino acids, including a 40-amino acid leader peptide and a 615-amino acid mature polypeptide. PCR-amplified VLCAD cDNAs were sequenced in cultured fibroblasts from two VLCAD-deficient patients. In both patients, a 105-bp deletion encompassing bases 1078-1182 in VLCAD cDNA was identified. The deletion seems to occur due to exon skipping during processing of VLCAD pre-mRNA. This is the first demonstration of a mutation causing VLCAD deficiency. Quantitative cDNA expression of normal human VLCAD was performed in the patients' fibroblasts, using vaccinia viral system, which demonstrated that the deficiency of the normal VLCAD protein causes impaired long-chain fatty acid beta-oxidation activity in the patients' fibroblasts. In patient fibroblasts, raising VLCAD activity to approximately 20% of normal control fibroblast activity raised palmitic acid beta-oxidation flux to the level found in control fibroblasts, which may offer important information for the rational design of future somatic gene therapy for VLCAD deficiency.  相似文献   

14.
Two new polyphenol oxidase (PPO) cDNAs (PPO3 and PPO4 cDNAs, accession numbers GQ354801 and GQ354802, respectively) were obtained by RACE-PCR from Agaricus bisporus. PPO3 cDNA was 1844 bp in length with an open reading frame of 1731 bp, while PPO4 cDNA was 2042 bp with an open reading frame of 1836 bp. PPO3 and PPO4 cDNAs, with 52% identity at the nucleic acid level, encoded a 576-amino acid protein of 66.3 kDa and 611-amino acid protein of 68.3 kDa, respectively. Mature forms of PPO3 and PPO4 were characterized after removing the specific C-terminal region and expressed in Escherichia coli BL21 (DE3) RIPL using pGEX-4T-1 vector. The expressed proteins were probed by the anti-A. bisporus PPO antibody but without PPO activity. This indicated that the recombinant mature PPO3 and mature PPO4 could not form an active center in prokaryotic expression system.  相似文献   

15.
cDNA encoding the precursor of rat liver medium chain acyl-CoA dehydrogenase (EC 1.3.99.3) was cloned and sequenced. The longest cDNA insert isolated was 1866 bases in length. This cDNA encodes the entire protein of 421-amino acids including a 25-amino acid leader peptide and a 396-amino acid mature polypeptide. The identity of the medium chain acyl-CoA dehydrogenase clone was confirmed by matching the amino acid sequence predicted from the cDNA to the NH2-terminal and nine internal tryptic peptide sequences derived from pure rat liver medium chain acyl-CoA dehydrogenase. The calculated molecular masses of the precursor medium chain acyl-CoA dehydrogenase, the mature medium chain acyl-CoA dehydrogenase, and the leader peptide are 46,600, 43,700, and 2,900 daltons, respectively. The leader peptide contains five basic amino acids and only one acidic amino acid; thus, it is positively charged, overall. Cysteine residues are unevenly distributed in the mature portion of the protein; five of six are found within the NH2-terminal half of the polypeptide. Comparison of medium chain acyl-CoA dehydrogenase sequence to other flavoproteins and enzymes which act on coenzyme A ester substrates did not lead to unambiguous identification of a possible FAD-binding site nor a coenzyme A-binding domain. The sequencing of other homologous acyl-CoA dehydrogenases will be informative in this regard.  相似文献   

16.
FSH is a glycoprotein hormone secreted by the pituitary gland that is essential for gonadal development and reproductive function. In avian reproduction study, especially in avian reproduction hormone study, it is hindered by the lack of biologically active FSH. In order to overcome this shortcoming, we prepared recombinant goose FSH as a single chain molecule and tested its biological activities in the present study. Coding sequences for mature peptides of goose FSH α and β subunits were amplified from goose pituitary cDNA. A chimeric gene containing α and β subunit sequences linked by the hCG carboxyl terminal peptide coding sequence was constructed. The recombinant gene was inserted into the pcDNA3.1-Fc eukaryotic expression vector to form pcDNA-Fc-gFSHβ-CTP-α and then transfected into 293-F cells. A recombinant, single chain goose FSH was expressed and verified by SDS-PAGE and western blot analysis, and was purified using Protein A agarose affinity and gel filtration chromatography. Biological activity analysis results showed that the recombinant, chimeric goose FSH possesses the function of stimulating estradiol secretion and cell proliferation, in cultured chicken granulosa cells. These results indicated that bioactive, recombinant goose FSH has been successfully prepared in vitro. The recombinant goose FSH will have the potential of being used as a research tool for studying avian reproductive activities, and as a standard for developing avian FSH bioassays.  相似文献   

17.
The cDNA sequences encoding mature and precursor forms of human dihydrolipoamide dehydrogenase (E3) were expressed in Escherichia coli using a lambda PL promoter-driven prokaryotic expression vector. The expressed proteins in total cell extracts were identified by Western blot analysis using anti-pig heart E3 antibody and also by measurement of E3 activity. Most of the expressed human E3 polypeptides (five bands) were found in the insoluble pellet while primarily full-length mature E3 was found in the soluble fraction. About 2% of the total soluble protein was mature human E3 when expressed in wild type E. coli AR120. Since wild type E. coli has its own endogenous E3 activity, the expression of human E3 was performed in a pyruvate dehydrogenase complex-deficient strain of E. coli, JRG1342. The expressed recombinant human E3s in JRG1342 were purified to near homogeneity. The amino-terminal amino acid sequence analysis revealed that the recombinant mature E3 had an expected sequence while the recombinant precursor E3 lost 19 amino acid residues of its 35-amino acid leader sequence presumably due to a proteolytic cleavage. The recombinant mature E3 displayed comparable kinetic properties to those reported for highly purified mammalian E3s. The truncated precursor E3 showed about half of the mature E3 activity. The double-reciprocal plot for the mature E3 in the direction of NAD+ reduction showed parallel lines (ping-pong mechanism) while that for the truncated precursor E3 displayed intersecting lines (sequential mechanism). In the direction of NADH oxidation, the kinetic mechanisms of both E3s were apparently a ping-pong mechanism. These kinetic results showed that the partial 16-amino acid extension in the leader sequence changed the kinetic mechanism of human E3 so that it resembled that of glutathione reductase.  相似文献   

18.
19.
A cDNA library in lambda-phage lambda gt11 containing DNA inserts prepared from human liver mRNA was screened with monoclonal antibodies to human protein C inhibitor. Six positive clones were isolated from 6 X 10(6) phages and plaque purified. The cDNA in the phage containing the largest insert, which hybridized to a DNA probe prepared on the basis of the amino-terminal amino acid sequence of the mature inhibitor, was sequenced. This cDNA insert contained 2106 base pairs coding for a 5'-noncoding region, a 19-amino acid signal peptide, a 387-amino acid mature protein, a stop codon, and a long 3'-noncoding region of 839 base pairs. Based on the amino acid sequence of the carboxyl-terminal peptide released by cleavage of protein C inhibitor by activated protein C as well as by thrombin, the reactive site peptide bond of protein C inhibitor is Arg354-Ser355. Five potential carbohydrate-binding sites were found in the mature protein. The high homology of the amino acid sequence of protein C inhibitor to the other known inhibitors clearly demonstrates that protein C inhibitor is a member of the superfamily of serine protease inhibitors including alpha 1-antichymotrypsin, alpha 1-antitrypsin, antithrombin III, ovalbumin, and angiotensinogen. Based on the difference matrices for these proteins, we present possible phylogenetic trees for these proteins.  相似文献   

20.
A full-length cDNA encoding the human H-protein of the glycine cleavage system has been isolated from a lambda gt11 human fetal liver cDNA library. The cDNA insert was 1091 base pairs with an open reading frame of 519 base pairs which encoded a 125-amino acid mature human H-protein with a 48-amino acid presequence. Human H-protein is 97%, 86%, and 46% identical to the bovine, chicken, and pea H-protein, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号