首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
AIMS: Application of molecular techniques to ecological studies has unveiled a wide diversity of micro-organisms in natural communities, previously unknown to microbial ecologists. New lineages of Archaea were retrieved from several non-extreme environments, showing that these micro-organisms are present in a large variety of ecosystems. The aim was therefore to assess the presence and diversity of Archaea in the sediments of the river Douro estuary (Portugal), relating the results obtained to ecological data. METHODS AND RESULTS: Total DNA was extracted from sediment samples obtained from an estuary deprived of vegetation, amplified by PCR and the resulting DNA fragments cloned. The archaeal origin of the cloned inserts was checked by Southern blot, dot blot or colony blot hybridization. Recombinant plasmids were further analysed by restriction with AvaII and selected for sequencing. Phylogenetic analyses of 14 sequences revealed the presence of members of the domain Archaea. Most of the sequences could be assigned to the kingdom Crenarchaeota. CONCLUSION: Most of these sequences were closely related to those obtained from non-extreme Crenarchaeota members previously retrieved from diverse ecosystems, such as freshwater and marine environments. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of archaeal 16S rDNA sequences in temperate estuarine sediments emerges as a valuable contribution to the understanding of the complexity of the ecosystem.  相似文献   

2.
Prokaryotic diversity in Zostera noltii-colonized marine sediments   总被引:2,自引:0,他引:2  
The diversity of microorganisms present in a sediment colonized by the phanerogam Zostera noltii has been analyzed. Microbial DNA was extracted and used for constructing two 16S rDNA clone libraries for Bacteria and Archaea. Bacterial diversity was very high in these samples, since 57 different sequences were found among the 60 clones analyzed. Eight major lineages of the Domain Bacteria were represented in the library. The most frequently retrieved bacterial group (36% of the clones) was delta-Proteobacteria related to sulfate-reducing bacteria. The second most abundant group (27%) was gamma-Proteobacteria, including five clones closely related to S-oxidizing endosymbionts. The archaeal clone library included members of Crenarchaeota and Euryarchaeota, with nine different sequences among the 15 analyzed clones, indicating less diversity when compared to the Bacteria organisms. None of these sequences was closely related to cultured Archaea organisms.  相似文献   

3.
Archaea form one of the three primary groups of extant life and are commonly associated with the extreme environments which many of their members inhabit. Currently, the Archaea are classified into two kingdoms, Crenarchaeota and Euryarchaeota, based on phylogenetic analysis of ribosomal RNA (rRNA) sequences. Molecular techniques allowing the retrieval and analysis of rRNA sequences from diverse environments are increasing our knowledge of archaeal diversity. This report describes the presence of marine Archaea in north-east Atlantic waters. Quantitative estimates indicated that the marine Archaea constitute 8 per cent of the total prokaryotic rRNA in Irish coastal waters. Phylogenetic analysis of the archaeal rRNA gene sequences revealed sufficient genetic diversity within Archaea to indicate that the current two-kingdom classification of Crenarchaeota and Euryarchaeota is restrictive.  相似文献   

4.
Zoige wetland of Tibetan plateau is a model low temperature ecosystem in a low latitude (33°56′N, 102°52′E) and high altitude region. Its organism has a unique phylogeny. To better evaluate the resource of the non-thermophilic Crenarchaeota in such an ecosystem, both restriction fragment length polymorphism (RFLP) and clone techniques were employed to study the diversity and phylogenetics of the non-thermophilic Crenarchaeota in the wetland soil. Archaeal 16S rRNA genes were amplified with the archaea-specific primers, and a library consisting of 240 clones was established. The non-thermophilic Crenarchaeota phylogenetic tree was constructed using the ARB phylogenetic analysis software. Based on the results of the RFLP experiments, the clones of all three Zoige wetland swamp soil samples were grouped into 16 different restriction cleavage patterns, all the clone coverage indices were above 91%, showing high library coverage. The correlations analysis indicated that the biodiversity of the non-thermophilic Crenarchaeota be positively correlated with soil moisture. The phylogenetic analysis revealed that all of the 16 Crenarchaeota sequences were clustered into two groups: 13 sequences in the Group 1.1b and 3 in the Group 1.3, similar to those archaeal sequences obtained from grassland soil, freshwater reservoirs, and seawater above boreholes, and radioactive groundwater and hot springs.  相似文献   

5.
Archaea have been found in many more diverse habitats than previously believed due in part to modern molecular approaches to discovering microbial diversity. We report here an unexpected expansion of the habitat diversity of the Archaea in the Cariaco Basin we found using a primer set designed for 18S eukaryotic rDNA sequence analysis. The results presented here expand the originally identified 9 archaeal clones reported in this environment using bacterial/archaeal primers to 152 archaeal clones: 67 (18 OTU) of these clones were found at a depth of 900 m of station A while 71 (9 OTU) of them were at a depth of between 300 approximately 335 m of station B&C depending upon which location the samples were taken. We used three phylogenetic analysis methods and detected 20 phylotypes belonging to a single previously unreported group distantly related to the Crenarchaeota. Also, we determined that the original nine sequences did not fall into any of the known phyla of the Archaea suggesting that they may represent a novel group within the Kingdom Archaea. Thus, from these two studies, we suggest that Archaea in the Cariaco Basin could be unique; however, further studies using archaeal-specific primers and the design of new primers as well as the systematic use of several different primer combinations may improve the chances of understanding the archeal diversity in the Cariaco Basin.  相似文献   

6.
Using a polyphasic approach, we examined the presence of Archaea in the Gulf of Aqaba, a warm marine ecosystem, isolated from major ocean currents and subject to pronounced seasonal changes in hydrography. Catalyzed reported deposition FISH analyses showed that Archaea make up to >20% of the prokaryotic community in the Gulf. A spatial separation between the two major phyla of Archaea was observed during summer stratification. Euryarchaeota were found exclusively in the upper 200 m, whereas Crenarchaeota were present in greater numbers in layers below the summer thermocline. 16S rRNA gene-based denaturing gradient gel electrophoresis confirmed this depth partitioning and revealed further diversity of Crenarchaeota and Euryarchaeota populations along depth profiles. Phylogenetic analysis showed pelagic Crenarchaeota and Euryarchaeota to differ from coral-associated Archaea from the Gulf, forming distinct clusters within the Marine Archaea Groups I and II. Endsequencing of fosmid libraries of environmental DNA provided a tentative identification of some members of the archaeal community and their role in the microbial community of the Gulf. Incorporation studies of radiolabeled leucine and bicarbonate in the presence of different inhibitors suggest that the archaeal community participates in autotrophic CO2 uptake and contributes little to the heterotrophic activity.  相似文献   

7.
To examine the diversity and structure of archaeal communities in the Yangtze River estuarine region of East China Sea (ECS), the 16S rRNA gene clone libraries of two typical sites were constructed with the archaea-specific primers. In total, 71 clones randomly selected were screened by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis and 21 clones with unique RFLP pattern were sequenced. All the sequences are clustered into the two groups of Marine Group I (MGI) and Marine Group II (MGII) which are affiliated with the phyla Crenarchaeota and Euryarchaeota, respectively. MGI clones dominate both libraries with 20 MGI sequences obtained. The majority of sequences are closely related to uncultured marine archaea except for two sequences of which the nearest neighbor is a newly identified isolate of nitrifying marine archaeon Nitrosopumilus maritimus (98% identity). The results indicate that ECS coastal waters are inhabited by archaeal community with low dominance and high diversity corresponding to the complex estuarine environments, suggesting that archaea may perform an important role in the estuarine ecosystem.  相似文献   

8.
The bacterial and archaeal community structure was examined in two methanogenic anaerobic digestion processes degrading organic household waste at mesophilic (37 degrees C) and thermophilic (55 degrees C) temperatures. Analysis of bacterial clone libraries revealed a predominance of Bacteroidetes (34% of total clones) and Chloroflexi (27%) at the mesophilic temperature. In contrast, in the thermophilic clone library, the major group of clones were affiliated with Thermotogae (61%). Within the domain Archaea, the phyla Euryarchaeota and Crenarchaeota were both represented, the latter only at the mesophilic temperature. The dominating archaeons grouped with Methanospirillum and Methanosarcina species at the mesophilic and thermophilic temperature, respectively. Generally, there was a higher frequency of different sequences at the lower temperature, suggesting a higher diversity compared to the community present at the thermophilic temperature. Furthermore, it was not only the species richness that was affected by temperature, but also the phylogenetic distribution of the microbial populations.  相似文献   

9.
Microorganisms play fundamental roles in the ecosystem of the Gulf of Mexico (GOM), yet their vertical distributions along the depth continuum of water column are not well known. In this study, we presented the 16S rDNA sequences and lipid profiles in the context of water chemistry to characterize the archaeal community structure above a gas hydrate mound (MC 118) in GOM. Our results showed that all archaeal sequences were related to unknown species of Crenarchaeota or Euryarchaeota. Phylogenetically, group II –β Euryarchaeota dominated the surface water and mid-depth (400-m) water (74% and 58% of total archaeal species, respectively) whereas the marine group I-γ Crenarchaeota dominated the bottom (869 m) water (61% of total archaeal species). Estimates of the Shannon index showed the highest diversity of planktonic Archaea at the 400 m depth. Glycerol dialkyl glycerol tetraether (GDGT) lipids were detected from the 400- and 869-m depths only and characterized by relatively high abundances of GDGT-5 (crenarchaeol) and GDGT-0. Our studies suggested a possible zonation of archaeal community in the water column, which did not seem to be affected by the possible venting of hydrocarbons from the hydrate location in GOM.  相似文献   

10.
We surveyed the archaeal assemblage in a stratified sulfurous lake (Lake Vilar, Banyoles, Spain) over 5 consecutive years to detect potential seasonal and interannual trends in the free-living planktonic Archaea composition. The combination of different primer pairs and nested PCR steps revealed an unexpectedly rich archaeal community. Overall, 140 samples were analyzed, yielding 169 different 16S rRNA gene sequences spread over 14 Crenarchaeota (109 sequences) and six Euryarchaeota phylogenetic clusters. Most of the Crenarchaeota (98% of the total crenarchaeotal sequences) affiliated within the Miscellaneous Crenarchaeota Group (MCG) and were related to both marine and freshwater phylotypes. Euryarchaeota mainly grouped within the Deep Hydrothermal Vent Euryarchaeota (DHVE) cluster (80% of the euryarchaeotal sequences) and the remaining 20% distributed into three less abundant taxa, most of them composed of soil and sediment clones. The largest fraction of phylotypes from the two archaeal kingdoms (79% of the Crenarchaeota and 54% of the Euryarchaeota) was retrieved from the anoxic hypolimnion, indicating that these cold and sulfide-rich waters constitute an unexplored source of archaeal richness. The taxon rank-frequency distribution showed two abundant taxa (MCG and DHVE) that persisted in the water column through seasons, plus several rare ones that were only detected occasionally. Differences in richness distribution and seasonality were observed, but no clear correlations were obtained when multivariate statistical analyses were carried out.  相似文献   

11.
Newly described phylogenetic lineages within the domain Archaea have recently been found to be significant components of marine picoplankton assemblages. To better understand the ecology of these microorganisms, we investigated the relative abundance, distribution, and phylogenetic composition of Archaea in the Santa Barbara Channel. Significant amounts of archaeal rRNA and rDNA (genes coding for rRNA) were detected in all samples analyzed. The relative abundance of archaeal rRNA as measured by quantitative oligonucleotide hybridization experiments was low in surface waters but reached higher values (20 to 30% of prokaryotic rRNA) at depths below 100 m. Probes were developed for the two major groups of marine Archaea detected. rRNA originating from the euryarchaeal group (group II) was most abundant in surface waters, whereas rRNA from the crenarchaeal group (group I) dominated at depth. Clone libraries of PCR-amplified archaeal rRNA genes were constructed with samples from 0 and 200 m deep. Screening of libraries by hybridization with specific oligonucleotide probes, as well as subsequent sequencing of the cloned genes, indicated that virtually all archaeal rDNA clones recovered belonged to one of the two groups. The recovery of cloned rDNA sequence types in depth profiles exhibited the same trends as were observed in quantitative rRNA hybridization experiments. One representative of each of 18 distinct restriction fragment length polymorphism types was partially sequenced. Recovered sequences spanned most of the previously reported phylogenetic diversity detected in planktonic crenarchaeal and euryarchaeal groups. Several rDNA sequences appeared to be harbored in archaeal types which are widely distributed in marine coastal waters. In total, data suggest that marine planktonic crenarchaea and euryarchaea of temperate coastal habitats thrive in different zones of the water column. The relative rRNA abundance of the crenarchaeal group suggests that its members constitute a significant fraction of the prokaryotic biomass in subsurface coastal waters.  相似文献   

12.
The archaeal diversity in salt pan sediment from Mumbai, India, was investigated by 16S rDNA-dependent molecular phylogeny. Small-subunit rRNA (16S rDNA) from salt pan sediment metagenome were amplified by polymerase chain reaction (PCR) using primers specific to the domain archaea. Thirty-two unique phylotypes were obtained by PCR-based RFLP of 16S rRNA genes using endonucleases Hae111 and Msp1, which were most suitable to score the genetic diversity. These phylotypes spanned a wide range within the domain Archaea including both Crenarchaeota and Euryarcheaota. However, none of the retrieved Crenarchaeota sequences could be grouped with previously cultured Crenarchaeota. Of all the Euryarcheaota sequences, three sequences were related to Haloarchaea, two were related to cultured Methanosarcina sp., and the remaining sequences were affiliated with uncultured Methanosarcina sp., Methanogenium sp., and Methanolobus sp. Most of the sequences determined were closely related to the sequences that had been previously obtained from metagenome of a variety of marine environments. The phylogenetic study of a site investigated for the first time revealed the presence of a highly diverse archaeal population and may represent novel sequences and organisms specially adapted to the salt pan sediment of Mumbai. These findings are of fundamental value for understanding the complexity of salt pan ecosystems.  相似文献   

13.
During the past ten years, Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages. More recently, the presence of novel archaeal phylogenetic lineages has been discovered in coastal marine environments, freshwater lakes, polar seas, and deep-sea hydrothermal vents. Therefore, we conducted an investigation into the archaeal community existing in tidal flat sediment collected from Ganghwa Island, Korea. Phylogenetic analysis of archaeal 16S rDNA amplified directly from tidal flat sediment DNA revealed the presence of two major lineages, belonging to the Crenarchaeota (53.9%) and Euryarchaeota (46.1%) phyla. A total of 102 clones were then sequenced and analyzed by comprehensive phylogenetic analysis. The sequences determined in our samples were found to be closely related to the sequences of clones which had been previously obtained from a variety of marine environments. Archaeal clones exhibited higher similarities (83.25-100%) to sequences from other environments in the public database than did those (75.22-98.46%) of previously reported bacterial clones obtained from tidal flat sediment. The results of our study suggest that the archaeal community in tidal flat sediment is remarkably diverse.  相似文献   

14.
Archaeal diversity in waters from deep South African gold mines.   总被引:16,自引:0,他引:16  
A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated.  相似文献   

15.
A hot spring in the solfataric field of Pisciarelli (Naples-Italy) was analysed for Archaeal diversity. Total DNA was extracted from the environment, archaeal 16S rRNA genes were amplified with Archaea specific primers, and a clone library consisting of 201 clones was established. The clones were grouped in 10 different groups each representing a specific band pattern using restriction fragment length polymorphism (RFLP). Members of all 10 groups were sequenced and phylogenetically analyzed. Surprisingly, a high abundance of clones belonging to non-thermophilic Crenarchaeal clusters were detected together with the thermophilic archaeon Acidianus infernus in this thermophilic environment. Neither Sulfolobus species nor other hyperthermophilic Crenarchaeota were detected in the clone library. The relative abundance of the sequenced clones was confirmed by terminal restriction fragment analyses. Amplification of 16S rRNA genes from Archaea transferred from the surrounding environment was considered negligible because DNA from non-thermophilic Crenarchaeota incubated under conditions similar to the solfatara could not be PCR amplified after 5 min.  相似文献   

16.
The microbial diversity in maritime meltwater pond sediments from Bratina Island, Ross Sea, Antarctica was investigated by 16S rDNA-dependent molecular phylogeny. Investigations of the vertical distribution, phylogenetic composition, and spatial variability of Bacteria and Archaea in the sediment were carried out. Results revealed the presence of a highly diverse bacterial population and a significantly depth-related composition. Assessment of 173 partial 16S rDNA clones analyzed by amplified rDNA restriction analysis (ARDRA) using tetrameric restriction enzymes (HinP1I 5'G/CGC3'and Msp I. 5'C/CGG3', BioLabs) revealed 153 different bacterial OTUs (operational taxonomic units). However, only seven archaeal OTUs were detected, indicating low archaeal diversity. Based on ARDRA results, 30 bacterial clones were selected for sequencing and the sequenced clones fell into seven major lineages of the domain Bacteria; the alpha, gamma, and delta subdivisions of Proteobacteria, the Cytophaga-Flavobacterium-Bacteroides, the Spirochaetaceae, and the Actinobacteria. All of the archaeal clones sequenced belonged to the group Crenarchaeota and phylogenetic analysis revealed close relationships with members of the deep-branching Group 1 Marine Archaea.  相似文献   

17.
Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the "Franz-Josef-Quelle" in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (alpha, beta, gamma, and delta), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (delta-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities.  相似文献   

18.
We surveyed the diversity of soil Archaea across a large scale elevational gradient of ecosystem types, from foothills forest to alpine tundra in the Front Range of the Rocky Mountains. We used a dilution technique to sequence the single most abundant archaeal 16S rDNA sequence in each of the 40 soil cores distributed across the gradient to compare our results to those of typical 16S clone library studies.We found a greater diversity of sequences than has typically been found in clone library studies from a single site or core, identifying sequences both from the Terrestrial Group and the FFSB Group at several sites. We did not observe any significant environmental correlates with the dominant sequence type, nor was there any relationship between the spatial distance between samples and the phylogenetic similarity of the dominant sequence types. Despite using a very different methodology, our collective results are in remarkably good agreement with other studies of soil Crenarchaeota in terms of the diversity and relative abundance of sequence types identified. We are able to identify two instances of very tightly clustered sequences which we suggest are the results of global selective sweeps—one closely related to SCA1145, an abundant globally distributed group within the Terrestrial Group of Crenarchaeota, and another nested within the more basal FFSB group of sequences. We replicated our sequence results at two levels: first, by repeating the dilution and PCR processes from the same soil core DNA extraction, and second, by performing a replicate DNA extraction from the same homogenized soil core sample. Pairs of sequences produced by the dilution replicates were significantly more similar than the pairs of sequences produced by the extraction replicates, suggesting that soil Crenarchaeota exists in highly localized and discrete clonal populations.  相似文献   

19.
Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries in combination with 14 t-RFLP profiles revealed a high abundance of clones clustering together with sequences from the nonthermophilic I.1b group of Crenarchaeota. The archaeal diversity in one solfatara was high; 26 different RFLP patterns were found using double digestion of the PCR products with restriction enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C).  相似文献   

20.
The distribution of the archaeal communities in deep subseafloor sediments [0–36 m below the seafloor (mbsf)] from the New Caledonia and Fairway Basins was investigated using DNA- and RNA-derived 16S rRNA clone libraries, functional genes and denaturing gradient gel electrophoresis (DGGE). A new method, Co-Migration DGGE (CM-DGGE), was developed to access selectively the active archaeal diversity. Prokaryotic cell abundances at the open-ocean sites were on average ∼3.5 times lower than at a site under terrestrial influence. The sediment surface archaeal community (0–1.5 mbsf) was characterized by active Marine Group 1 (MG-1) Archaea that co-occurred with ammonia monooxygenase gene ( amoA ) sequences affiliated to a group of uncultured sedimentary Crenarchaeota . However, the anoxic subsurface methane-poor sediments (below 1.5 mbsf) were dominated by less active archaeal communities, such as the Thermoplasmatales , Marine Benthic Group D and other lineages probably involved in the methane cycle ( Methanosarcinales , ANME-2 and DSAG/MBG-B). Moreover, the archaeal diversity of some sediment layers was restricted to only one lineage (Uncultured Euryarchaeota , DHVE6, MBG-B, MG-1 and SAGMEG). Sequences forming two clusters within the Thermococcales order were also present in these cold subseafloor sediments, suggesting that these uncultured putative thermophilic archaeal communities might have originated from a different environment. This study shows a transition between surface and subsurface sediment archaeal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号