首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in response to neurotoxin-damage to retina in vivo display multipotential and self-renewing capacities, the cardinal features of stem cells.

Methodology/Principal Findings

We demonstrate that Notch and Wnt signaling activate Müller cells through their canonical pathways and that a rare subset of activated Müller cells differentiates along rod photoreceptor lineage in the outer nuclear layer. The differentiation of activated Müller cells along photoreceptor lineage is confirmed by multiple approaches that included Hoechst dye efflux analysis, genetic analysis using retina from Nrl-GFP mice, and lineage tracing using GS-GFP lentivirus in wild type and rd mice in vitro and S334ter rats in vivo. Examination of S334ter rats for head-neck tracking of visual stimuli, a behavioral measure of light perception, demonstrates a significant improvement in light perception in animals treated to activate Müller cells. The number of activated Müller cells with rod photoreceptor phenotype in treated animals correlates with the improvement in their light perception.

Conclusion/Significance

In summary, our results provide a proof of principle for non-neurotoxin-mediated activation of Müller cells through Notch and Wnt signaling toward the regeneration of rod photoreceptors.  相似文献   

2.

Background

Although the circadian clock in the mammalian retina regulates many physiological processes in the retina, it is not known whether and how the clock controls the neuronal pathways involved in visual processing.

Methodology/Principal Findings

By recording the light responses of rabbit axonless (A-type) horizontal cells under dark-adapted conditions in both the day and night, we found that rod input to these cells was substantially increased at night under control conditions and following selective blockade of dopamine D2, but not D1, receptors during the day, so that the horizontal cells responded to very dim light at night but not in the day. Using neurobiotin tracer labeling, we also found that the extent of tracer coupling between rabbit rods and cones was more extensive during the night, compared to the day, and more extensive in the day following D2 receptor blockade. Because A-type horizontal cells make synaptic contact exclusively with cones, these observations indicate that the circadian clock in the mammalian retina substantially increases rod input to A-type horizontal cells at night by enhancing rod-cone coupling. Moreover, the clock-induced increase in D2 receptor activation during the day decreases rod-cone coupling so that rod input to A-type horizontal cells is minimal.

Conclusions/Significance

Considered together, these results identify the rod-cone gap junction as a key site in mammals through which the retinal clock, using dopamine activation of D2 receptors, controls signal flow in the day and night from rods into the cone system.  相似文献   

3.
4.

Background  

Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT).  相似文献   

5.
Summary Retinae from two day old rats were used in this study and the cultures were handled according to standard methods used in this laboratory. In the first few days of cultivation an abundant outgrowth of nerve fibers into the cell-free medium was observed. These fibers later degenerated and by the beginning of the second week they had completely disappeared. In the living cultures, differentiating ganglion cells, bipolar and horizontal neurons could be seen in the main explant in association with various types of glial cells. Rod cells became arranged as epithelial sheets or as clusters of cells which often formed rosettes. The nuclei of these sensory cells possessed a characteristic chromatin pattern by which they always could be differentiated from other cells in the cultures. Cytoplasmic extensions that developed from the free surface of the sensory rod cells were observed within a week following explantation. A limiting membrane separated these extensions from the nucleated part of the rod cells. Morphologic details of the different neuronal cell types could be demonstrated in cultures by Bodian's silver impregnation technique.With the electron microscope, retinal development in culture was observed and compared to the development of the retina of the intact eye. Cilia developed from processes extending from the rod cell free surface. These processes were the rod cell inner segments in which many mitochondria were seen. At the bases of these segments terminal bars developed forming the outer limiting membrane. In the area of the terminal bars microvillous extensions projected between the rod cell inner segments. After twelve days in vitro a bulb-like enlargement containing a lamellar membrane system developed at the end of the cilium. This bulb-like enlargement was a beginning of the rod cell outer segment. The lamellar system did not acquire the symmetry or precise organization during cultivation that was observed in the retina of the intact eye. The distinguishing characteristics of individual neuronal cell types seen in cultivated retinae were the same as those described for their counterparts in the retina in situ, but regular plexiform layers failed to develop. Likewise, there were no indications of typical synapses in the neuropils of the cultures. There were many processes containing vesicles similar to those in presynaptic endings and mitochondria but membrane thickenings were not apparent.The results indicate that the retina cultivated in vitro does not behave as an organized entity. The component cells dissociated more and more with time, and developmental differentiation was observed only at the cellular level.Supported by USPHS Grants 5R01NB03114-06 and 5T01GM00459 from the National Institutes of Health, Bethesda, Maryland.Sincere appreciation is expressed to Mrs. Eleanor Morris for management of the cultures, and to Mr. E. E. Pitsinger, Jr. for his photographic assistance.  相似文献   

6.

Background  

The Beijing lineage of Mycobacterium tuberculosis is causing concern due to its global distribution and its involvement in severe outbreaks. Studies focused on this lineage are mainly restricted to geographical settings where its prevalence is high, whereas those in other areas are scarce. In this study, we analyze Beijing isolates in the Mediterranean area, where this lineage is not prevalent and is mainly associated with immigrant cases.  相似文献   

7.

Purpose

Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease.

Methods

We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis.

Results

Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization.

Conclusion

We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.  相似文献   

8.
9.
10.

Purpose

Vision originates in rods and cones at the outer retina. Already at these early stages, diverse processing schemes shape and enhance image information to permit perception over a wide range of lighting conditions. In this work, we address the role of hyperpolarization-activated and cyclic nucleotide-gated channels 1 (HCN1) in rod photoreceptors for the enhancement of rod system responsivity under conditions of light exposure.

Methods

To isolate HCN1 channel actions in rod system responses, we generated double mutant mice by crossbreeding Hcn1-/- mice with Cnga3-/- mice in which cones are non-functional. Retinal function in the resulting Hcn1-/- Cnga3-/- animals was followed by means of electroretinography (ERG) up to the age of four month. Retinal imaging via scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) was also performed to exclude potential morphological alterations.

Results

This study on Hcn1-/- Cnga3-/- mutant mice complements our previous work on HCN1 channel function in the retina. We show here in a functional rod-only setting that rod responses following bright light exposure terminate without the counteraction of HCN channels much later than normal. The resulting sustained signal elevation does saturate the retinal network due to an intensity-dependent reduction in the dynamic range. In addition, the lack of rapid adaptational feedback modulation of rod photoreceptor output via HCN1 in this double mutant limits the ability to follow repetitive (flicker) stimuli, particularly under mesopic conditions.

Conclusions

This work corroborates the hypothesis that, in the absence of HCN1-mediated feedback, the amplitude of rod signals remains at high levels for a prolonged period of time, leading to saturation of the retinal pathways. Our results demonstrate the importance of HCN1 channels for regular vision.  相似文献   

11.

Background  

The vertebrate opsins are proteins which utilise a retinaldehyde chromophore in their photosensory or photoisomerase roles in the visual/irradiance detection cycle. The majority of the opsins, such as rod and cone opsins, have a very highly conserved gene structure suggesting a common lineage. Exceptions to this are RGR-opsin and melanopsin, whose genes have very different intron insertion positions. The gene structure of another opsin, peropsin (retinal pigment epithelium-derived rhodopsin homologue,RRH) is unknown.  相似文献   

12.

Aim

In this work, phenotypic analyses of a Ensifer meliloti fixN1 mutant under free‐living and symbiotic conditions have been carried out.

Methods and Results

Ensifer meliloti fixN1 mutant showed a defect in growth as well as in TMPD‐dependent oxidase activity when cells were incubated under micro‐oxic conditions. Furthermore, haem c staining analyses of a fixN1 and a fixP1 mutant identified two membrane‐bound c‐type cytochromes of 27 and 32 kDa, present in microaerobically grown cells and in bacteroids, as the FixO and FixP components of the E. meliloti cbb3 oxidase. Under symbiotic conditions, fixN1 mutant showed a clear nitrogen fixation defect in alfalfa plants that were grown in an N‐free nutrient solution during 3 weeks. However, in plants grown for a longer period, fixNOQP1 copy was not indispensable for symbiotic nitrogen fixation.

Conclusions

The copy 1 of the fixNOQP operon is involved in E. meliloti respiration and growth under micro‐oxic conditions as well as in the expression of the FixO and FixP components of the cbb3 oxidase present in free‐living microaerobic cultures and in bacteroids. This copy is important for nitrogen fixation during the early steps of the symbiosis.

Significance and Impact of the Study

It is the first time that a functional analysis of the E. meliloti copy 1 of the fixNOQP operon is performed. In this work, the cytochromes c that constitute the cbb3 oxidase operating in free‐living micro‐oxic cultures and in bacteroids of E. meliloti have been identified.  相似文献   

13.
The retinas of teleost fish grow continuously, in part, by neuronal hyperplasia and when lesioned will regenerate. Within the differentiated retina, the growth-associated hyperplasia results in the generation of new rod photoreceptors only, whereas injury-induced neurogenesis results in the regeneration of all retinal cell types. It is believed, however, that both new rod photoreceptors and regenerated neurons originate from the same populations of intrinsic progenitors. Experiments are described here that attempt to identify in the normal retina of goldfish neuronal progenitors intrinsic to the retina, particularly those which have remained cryptic because they divide infrequently. Long-term, systemic exposure to bromodeoxyuridine (BrdU) was used to label these cells. Five populations of proliferative cells were labeled: microglia, which are briefly described but not studied further; retinal progenitors in the circumferential germinal zone (CGZ); and rod precursors in the outer nuclear layer (ONL), both of which have been well characterized previously; and two populations of slowly-dividing cells in the inner nuclear layer (INL). The majority of these cells have a fusiform morphology, whereas the remaining ones are spherical. Longitudinal BrdU labeling suggests that the fusiform cells migrate to the ONL to replenish the pool of rod precursors. A subset of the spherical cells express pax6, although none are stained with markers of differentiated amacrine or bipolar cells. It is hypothesized that these rare, pax6-expressing cells are retinal stem cells, which give rise to the pax6-negative fusiform cells. Based on these data, two models are proposed: the first describes the lineage of rod photoreceptors in goldfish; the second is a consensus model of neurogenesis in the retinas of all teleosts.  相似文献   

14.
Hayasaka N  LaRue SI  Green CB 《PloS one》2010,5(12):e15599

Background

Although an endogenous circadian clock located in the retinal photoreceptor layer governs various physiological events including melatonin rhythms in Xenopus laevis, it remains unknown which of the photoreceptors, rod and/or cone, is responsible for the circadian regulation of melatonin release.

Methodology/Principal Findings

We selectively disrupted circadian clock function in either the rod or cone photoreceptor cells by generating transgenic Xenopus tadpoles expressing a dominant-negative CLOCK (XCLΔQ) under the control of a rod or cone-specific promoter. Eyecup culture and continuous melatonin measurement revealed that circadian rhythms of melatonin release were abolished in a majority of the rod-specific XCLΔQ transgenic tadpoles, although the percentage of arrhythmia was lower than that of transgenic tadpole eyes expressing XCLΔQ in both rods and cones. In contrast, whereas a higher percentage of arrhythmia was observed in the eyes of the cone-specific XCLΔQ transgenic tadpoles compare to wild-type counterparts, the rate was significantly lower than in rod-specific transgenics. The levels of the transgene expression were comparable between these two different types of transgenics. In addition, the average overall melatonin levels were not changed in the arrhythmic eyes, suggesting that CLOCK does not affect absolute levels of melatonin, only its temporal expression pattern.

Conclusions/Significance

These results suggest that although the Xenopus retina is made up of approximately equal numbers of rods and cones, the circadian clocks in the rod cells play a dominant role in driving circadian melatonin rhythmicity in the Xenopus retina, although some contribution of the clock in cone cells cannot be excluded.  相似文献   

15.
PurposeTo investigate the expression patterns of LIM Homeobox 6 (Lhx6) in the adult and developing mouse retina.MethodsThe Lhx6-GFP knock-in allele was used to activate constitutive expression of a GFP reporter in Lhx6 expressing cells. Double labeling with GFP and retinal markers in the mouse retina at postnatal day 56 (P56) was performed to identify the cell types expressing Lhx6. To determine the neuronal cell types that express Lhx6, double labeling with GFP and various retinal markers was employed in the differentiating retina at P7 and P15.ResultsGFP + Lhx6 lineage cells were determined in Brn3a + retinal ganglion cells (RGCs), ChAT + amacrine cells (ACs), and Islet-class LIM-homeodomain 1 (Isl1+) ACs in the mouse retina at P56. In the ganglion cell layer (GCL), Lhx6 was expressed in Brn3a + RGCs but not Brn3b + RGCs at P15. Moreover, in the inner nuclear layer (INL), Lhx6 was not expressed in Bhlhb5+ ACs at P15. However, Lhx6 was weakly expressed in Glyt1+ ACs and Pax6+ ACs, and strongly expressed in Isl1+ and ChAT + ACs at P15.ConclusionLhx6 was expressed in RGCs and ACs in both the adult and developing mouse retina.  相似文献   

16.
neuroD is a member of the family of proneural genes, which function to regulate the cell cycle, cell fate determination and cellular differentiation. In the retinas of larval and adult teleosts, neuroD is expressed in two populations of post-mitotic cells, a subset of amacrine cells and nascent cone photoreceptors, and proliferating cells in the lineages that give rise exclusively to rod and cone photoreceptors. Based on previous studies of NeuroD function in vitro and the cellular pattern of neuroD expression in the zebrafish retina, we hypothesized that within the mitotic photoreceptor lineages NeuroD selectively regulates aspects of the cell cycle. To test this hypothesis, gain and loss-of-function approaches were employed, relying on the inducible expression of a NeuroDEGFP fusion protein and morpholino oligonucleotides to inhibit protein translation, respectively. Conditional expression of neuroD causes cells to withdraw from the cell cycle, upregulate the expression of the cell cycle inhibitors, p27 and p57, and downregulate the cell cycle progression factors, Cyclin B1, Cyclin D1, and Cyclin E2. In the absence of NeuroD, cells specific for the rod and cone photoreceptor lineage fail to exit the cell cycle, and the number of cells expressing Cyclin D1 is increased. When expression is ectopically induced in multipotent progenitors, neuroD promotes the genesis of rod photoreceptors and inhibits the genesis of Müller glia. These data show that in the teleost retina NeuroD plays a fundamental role in photoreceptor genesis by regulating mechanisms that promote rod and cone progenitors to withdraw from the cell cycle. This is the first in vivo demonstration in the retina of cell cycle regulation by NeuroD.  相似文献   

17.

Purpose

Hypothermia has been shown to be neuroprotective in the therapy of ischemic stroke in the brain. To date no studies exist on the level of the inner retina and it is unclear if hypothermia would prolong the ischemic tolerance time of retinal ganglion cells, which are decisive in many ischemic retinopathies.

Methods

Bovine eyes were enucleated and stored either at 21°C or 37°C for 100 or 340 minutes, respectively. Afterwards the globes were dissected, the retina was prepared and either the spontaneous ganglion cell responses were measured or the retina was incubated as an organotypic culture for additional 24 hours. After incubation the retina was either processed for histology (H&E and DAPI staining) or real-time PCR (Thy-1 expression) was performed.

Results

Hypothermia prolonged ganglion cell survival up to 340 minutes under ischemic conditions. In contrast to eyes kept at 37°C the eyes stored at 21°C still showed spontaneous ganglion cell spiking (56.8% versus 0%), a 5.8 fold higher Thy-1 mRNA expression (not significant, but a trend) and a preserved retinal structure after 340 minutes of ischemia.

Conclusion

Hypothermia protects retinal ganglion cells against ischemia and prolongs their ischemic tolerance time.  相似文献   

18.

Purpose

To evaluate risk factors associated with alterations in venous structures adjacent to an ablation zone after percutaneous irreversible electroporation (IRE) of hepatic malignancies at subacute follow-up (1 to 3 days after IRE) and to describe evolution of these alterations at mid-term follow-up.

Materials and Methods

43 patients (men/women, 32/11; mean age, 60.3 years) were identified in whom venous structures were located within a perimeter of 1.0 cm of the ablation zone at subacute follow-up after IRE of 84 hepatic lesions (primary/secondary hepatic tumors, 31/53). These vessels were retrospectively evaluated by means of pre-interventional and post-interventional contrast-enhanced magnetic resonance imaging or computed tomography or both. Any vascular changes in flow, patency, and diameter were documented. Correlations between vascular change (yes/no) and characteristics of patients, lesions, and ablation procedures were assessed by generalized linear models.

Results

191 venous structures were located within a perimeter of 1.0 cm of the ablation zone: 55 (29%) were encased by the ablation zone, 78 (41%) abutted the ablation zone, and 58 (30%) were located between 0.1 and 1.0 cm from the border of the ablation zone. At subacute follow-up, vascular changes were found in 19 of the 191 vessels (9.9%), with partial portal vein thrombosis in 2, complete portal vein thrombosis in 3, and lumen narrowing in 14 of 19. At follow-up of patients with subacute vessel alterations (mean, 5.7 months; range, 0 to 14 months) thrombosis had resolved in 2 of 5 cases; vessel narrowing had completely resolved in 8 of 14 cases, and partly resolved in 1 of 14 cases. The encasement of a vessel by ablation zone (OR = 6.36, p<0.001), ablation zone being adjacent to a portal vein (OR = 8.94, p<0.001), and the usage of more than 3 IRE probes (OR = 3.60, p = 0.035) were independently associated with post-IRE vessel alterations.

Conclusion

Venous structures located in close proximity to an IRE ablation zone remain largely unaffected by this procedure, and thrombosis is rare.  相似文献   

19.

Background

Advanced age contributes to clinical manifestations of many retinopathies and represents a major risk factor for age-related macular degeneration, a leading cause of visual impairment and blindness in the elderly. Rod photoreceptors are especially vulnerable to genetic defects and changes in microenvironment, and are among the first neurons to die in normal aging and in many retinal degenerative diseases. The molecular mechanisms underlying rod photoreceptor vulnerability and potential biomarkers of the aging process in this highly specialized cell type are unknown.

Methodology/Principal Findings

To discover aging-associated adaptations that may influence rod function, we have generated gene expression profiles of purified rod photoreceptors from mouse retina at young adult to early stages of aging (1.5, 5, and 12 month old mice). We identified 375 genes that showed differential expression in rods from 5 and 12 month old mouse retina compared to that of 1.5 month old retina. Quantitative RT-PCR experiments validated expression change for a majority of the 25 genes that were examined. Macroanalysis of differentially expressed genes using gene class testing and protein interaction networks revealed overrepresentation of cellular pathways that are potentially photoreceptor-specific (angiogenesis and lipid/retinoid metabolism), in addition to age-related pathways previously described in several tissue types (oxidative phosphorylation, stress and immune response).

Conclusions/Significance

Our study suggests a progressive shift in cellular homeostasis that may underlie aging-associated functional decline in rod photoreceptors and contribute to a more permissive state for pathological processes involved in retinal diseases.  相似文献   

20.

Background  

Image analysis is an essential component in many biological experiments that study gene expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C. elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy. In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and traces their lineage. However, due to the amount of noise present in the data and due to the challenges introduced by increasing number of cells in later stages of development, this program is not error free. In the current version, the error correction (i.e., editing) is performed manually using a graphical interface tool named AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes several hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号