首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

In a SINE-based PCR assay, a primer set specific for guinea pig genome short interspersed elements DNA was used to test the utility of genomic markers for identifying the source of vertebrate blood meals of Triatoma infestans.  相似文献   

2.

Background  

One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10.  相似文献   

3.

Background  

Ever since the theory about two rounds of genome duplication (2R) in the vertebrate lineage was proposed, the Hox gene clusters have served as the prime example of quadruplicate paralogy in mammalian genomes. In teleost fishes, the observation of additional Hox clusters absent in other vertebrate lineages suggested a third tetraploidization (3R). Because the Hox clusters occupy a quite limited part of each chromosome, and are special in having position-dependent regulation within the multi-gene cluster, studies of syntenic gene families are needed to determine the extent of the duplicated chromosome segments. We have analyzed in detail 14 gene families that are syntenic with the Hox clusters to see if their phylogenies are compatible with the Hox duplications and the 2R/3R scenario. Our starting point was the gene family for the NPY family of peptides located near the Hox clusters in the pufferfish Takifugu rubripes, the zebrafish Danio rerio, and human.  相似文献   

4.

Background  

The vertebrate globin genes encoding the α- and β-subunits of the tetrameric hemoglobins are clustered at two unlinked loci. The highly conserved linear order of the genes flanking the hemoglobins provides a strong anchor for inferring common ancestry of the globin clusters. In fish, the number of α-β-linked globin genes varies considerably between different sublineages and seems to be related to prevailing physico-chemical conditions. Draft sequences of the Atlantic cod genome enabled us to determine the genomic organization of the globin repertoire in this marine species that copes with fluctuating environments of the temperate and Arctic regions.  相似文献   

5.

Background  

Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization ~40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication.  相似文献   

6.
7.

Background  

Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.  相似文献   

8.

Background  

G protein-coupled receptors (GPCRs) constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in eukaryotes. The genome of the protochordate Ciona intestinalis has a compact size with an ancestral complement of many diversified gene families of vertebrates and is a good model system for studying protochordate to vertebrate diversification. An analysis of the Ciona repertoire of GPCRs from a comparative genomic perspective provides insight into the evolutionary origins of the GPCR signalling system in vertebrates.  相似文献   

9.
The gain and loss of genes during 600 million years of vertebrate evolution   总被引:1,自引:1,他引:0  

Background  

Gene duplication is assumed to have played a crucial role in the evolution of vertebrate organisms. Apart from a continuous mode of duplication, two or three whole genome duplication events have been proposed during the evolution of vertebrates, one or two at the dawn of vertebrate evolution, and an additional one in the fish lineage, not shared with land vertebrates. Here, we have studied gene gain and loss in seven different vertebrate genomes, spanning an evolutionary period of about 600 million years.  相似文献   

10.
We report the genomic DNA sequence of a single chromosome (linkage group 22; LG22) of the small teleost fish medaka (Oryzias latipes) as a first whole chromosome sequence from a non-mammalian vertebrate. The order and orientation of 633 protein-coding genes were deduced from 18,803,338 bp of DNA sequence, providing the opportunity to analyze chromosome evolution of vertebrate genomes by direct comparison with the human genome. The average number of genes in the "conserved gene cluster" (CGC), a strict definition of "synteny" at the sequence basis, between medaka and human was 1.6. These and other data suggest that approximately 38.8% of pair-wise gene relationships would have been broken from their common ancestor in the human and medaka lineages and further imply that approx 20,000 (15,520-23,280) breaks would have occurred from the entire genome of the common ancestor. These breaks were generated mainly by intra-chromosomal shufflings at a specific era in the vertebrate lineage. These precise comparative genomics allowed us to identify the pieces of ancient chromosomes of the common vertebrate ancestor and estimate chromosomal evolution in the vertebrate lineage.  相似文献   

11.

Background  

The availability of newly sequenced vertebrate genomes, along with more efficient and accurate alignment algorithms, have enabled the expansion of the field of comparative genomics. Large-scale genome rearrangement events modify the order of genes and non-coding conserved regions on chromosomes. While certain large genomic regions have remained intact over much of vertebrate evolution, others appear to be hotspots for genomic breakpoints. The cause of the non-uniformity of breakpoints that occurred during vertebrate evolution is poorly understood.  相似文献   

12.
13.

Background  

The human genome contains a large number of gene clusters with multiple-variable-first exons, including the drug-metabolizing UDP glucuronosyltransferase (UGT1) and I-branching β-1,6-N-acetylglucosaminyltransferase (GCNT2, also known as IGNT) clusters, organized in a tandem array, similar to that of the protocadherin (PCDH), immunoglobulin (IG), and T-cell receptor (TCR) clusters. To gain insight into the evolutionary processes that may have shaped their diversity, we performed comprehensive comparative analyses for vertebrate multiple-variable-first-exon clusters.  相似文献   

14.

Background  

Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD) event occurred in a common ancestor of teleost fishes. However, it is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and therefore, how many of the duplicated genes contribute to the genetic differences among teleosts. This subject is also important for understanding the process of vertebrate evolution through WGD events. We applied a comparative evolutionary approach to this question by focusing on the genes involved in long-term potentiation, taste and olfactory transduction, and the tricarboxylic acid cycle, based on the whole genome sequences of four teleosts; zebrafish, medaka, stickleback, and green spotted puffer fish.  相似文献   

15.
16.

Background  

Ferns have generally been neglected in studies of chloroplast genomics. Before this study, only one polypod and two basal ferns had their complete chloroplast (cp) genome reported. Tree ferns represent an ancient fern lineage that first occurred in the Late Triassic. In recent phylogenetic analyses, tree ferns were shown to be the sister group of polypods, the most diverse group of living ferns. Availability of cp genome sequence from a tree fern will facilitate interpretation of the evolutionary changes of fern cp genomes. Here we have sequenced the complete cp genome of a scaly tree fern Alsophila spinulosa (Cyatheaceae).  相似文献   

17.

Background  

The origin of vertebrate retroviruses (Retroviridae) is yet to be thoroughly investigated, but due to their similarity and identical gag-pol (and env) genome structure, it is accepted that they evolve from Ty3/Gypsy LTR retroelements the retrotransposons and retroviruses of plants, fungi and animals. These 2 groups of LTR retroelements code for 3 proteins rarely studied due to the high variability – gag polyprotein, protease and GPY/F module. In relation to 3 previously proposed Retroviridae classes I, II and II, investigation of the above proteins conclusively uncovers important insights regarding the ancient history of Ty3/Gypsy and Retroviridae LTR retroelements.  相似文献   

18.

Background  

Lbx/ladybird genes originated as part of the metazoan cluster of Nk homeobox genes. In all animals investigated so far, both the protostome genes and the vertebrate Lbx1 genes were found to play crucial roles in neural and muscle development. Recently however, additional Lbx genes with divergent expression patterns were discovered in amniotes. Early in the evolution of vertebrates, two rounds of whole genome duplication are thought to have occurred, during which 4 Lbx genes were generated. Which of these genes were maintained in extant vertebrates, and how these genes and their functions evolved, is not known.  相似文献   

19.

Background  

The cytochrome P450 aromatase (CYP19), catalyses the aromatisation of androgens to estrogens, a key mechanism in vertebrate reproductive physiology. A current evolutionary hypothesis suggests that CYP19 gene arose at the origin of vertebrates, given that it has not been found outside this clade. The human CYP19 gene is located in one of the proposed MHC-paralogon regions (HSA15q). At present it is unclear whether this genomic location is ancestral (which would suggest an invertebrate origin for CYP19) or derived (genomic location with no evolutionary meaning). The distinction between these possibilities should help to clarify the timing of the CYP19 emergence and which taxa should be investigated.  相似文献   

20.

Background  

We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号