首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble extract was obtained on treatment of rat liver mitochondrial outer membranes with cholate which bound [14C]malonyl-CoA but was essentially free of carnitine palmitoyltransferase (CPT) activity. Extraction of mitochondrial inner membranes with cholate readily solubilized a CPT activity which was insensitive to malonyl-CoA. Combination of these two extracts caused the CPT derived from inner membranes to become inhibitable by malonyl-CoA.  相似文献   

2.
Concanavalin A (ConA) stimulated the phosphorylation of the beta-subunit of the insulin receptor and an Mr-185,000 protein on serine and tyrosine residues in intact H-35 rat hepatoma cells. This Mr-185,000 protein whose phosphorylation was stimulated by ConA was identical to pp185, a protein reported previously to be a putative endogenous substrate for the insulin receptor tyrosine kinase in rat hepatoma cells. In Chinese hamster ovary (CHO) cells transfected with cDNA of the human insulin receptor, tyrosine-phosphorylation of pp185 was strongly enhanced by ConA compared with the controls, suggesting that the induction of tyrosine-phosphorylation of pp185 was due to stimulation of the insulin receptor kinase by ConA. Moreover, monovalent ConA only slightly induced the tyrosine-phosphorylation of pp185, which was enhanced by the addition of anti-ConA IgG, suggesting that ConA stimulated the insulin receptor kinase mainly by the receptor cross-linking or aggregation in intact cells. These data suggest that the insulin-mimetic action of ConA is related to the autophosphorylation and activation of the insulin receptor tyrosine kinase, as well as the subsequent phosphorylation of pp185 in intact cells.  相似文献   

3.
1. The interaction of malonyl-CoA with the outer carnitine palmitoyltransferase (CPT) system of rat liver mitochondria was re-evaluated by using preparations of highly purified outer membranes, in the light of observations that other subcellular structures that normally contaminate crude mitochondrial preparations also contain malonyl-CoA-sensitive CPT activity. 2. In outer-membrane preparations, which were purified about 200-fold with respect to the inner-membrane-matrix fraction, malonyl-CoA binding was largely accounted for by a single high-affinity component (KD = 0.03 microM), in contrast with the dual site (low- and high-affinity) previously found with intact mitochondria. 3. There was no evidence that the decreased sensitivity of CPT to malonyl-CoA inhibition observed in outer membranes obtained from 48 h-starved rats (compared with those from fed animals) was due to a decreased ratio of malonyl-CoA binding to CPT catalytic moieties. Thus CPT specific activity and maximal high-affinity [14C]malonyl-CoA binding (expressed per mg of protein) were increased 2.2- and 2.0-fold respectively in outer membranes from 48 h-starved rats. 4. Palmitoyl-CoA at a concentration that was saturating for CPT activity (5 microM) decreased the affinity of malonyl-CoA binding by an order of magnitude, but did not alter the maximal binding of [14C]malonyl-CoA. 5. Preincubation of membranes with either tetradecylglycidyl-CoA or 2-bromopalmitoyl-CoA plus carnitine resulted in marked (greater than 80%) inhibition of high-affinity binding, concurrently with greater than 95% inhibition of CPT activity. These treatments also unmasked an effect of subsequent treatment with palmitoyl-CoA to increase low-affinity [14C]malonyl-CoA binding. 6. These data are discussed in relation to the possible mechanism of interaction between the malonyl-CoA-binding site and the active site of the enzyme.  相似文献   

4.
The functional molecular sizes of the protein(s) mediating the carnitine palmitoyltransferase I (CPT I) activity and the [14C]malonyl-CoA binding in purified outer-membrane preparations from rat liver mitochondria were determined by radiation-inactivation analysis. In all preparations tested the dose-dependent decay in [14C]malonyl-CoA binding was less steep than that for CPT I activity, suggesting that the protein involved in malonyl-CoA binding may be smaller than that catalysing the CPT I activity. The respective sizes computed from simultaneous analysis for molecular-size standards exposed under identical conditions were 60,000 and 83,000 DA for malonyl-CoA binding and CPT I activity respectively. In irradiated membranes the sensitivity of CPT activity to malonyl-CoA inhibition was increased, as judged by malonyl-CoA inhibition curves for the activity in control and in irradiated membranes that had received 20 Mrad radiation and in which CPT activity had decayed by 60%. Possible correlations between these data and other recent observations on the CPT system are discussed.  相似文献   

5.
Recent evidence has shown that the outer, overt, malonyl-CoA-inhibitable carnitine palmitoyltransferase (CPTo) activity resides in the mitochondrial outer membrane [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382]. A comparison of CPTo activity of rat liver mitochondria with the inner, initially latent, carnitine palmitoyltransferase (CPTi) of the mitochondrial inner membrane has revealed that the presence of digitonin and several other detergents inactivates CPTo activity. The CPTi activity, in contrast, was markedly stimulated by various detergents and phospholipid liposomes. These findings explain why in previous studies, which used digitonin or other detergents to expose, separate and purify the CPT activities, the inferences were drawn that (a) the ratio of latent to overt CPT was quite high, (b) both the CPT activities could be ascribed to one active protein recovered, and (c) the observed lack of malonyl-CoA inhibition indicated possible loss/separation of a putative malonyl-CoA-inhibition-conferring protein. Although both CPTo and CPTi were found to catalyse the forward and the backward reactions, CPTo showed greater capacity for the forward reaction and CPTi for the backward reaction. The easily solubilizable CPT, released on sonication of mitoplasts or of intact mitochondria under hypo-osmotic conditions, resembled CPTi in its properties. When octyl glucoside was used under appropriate conditions, 40-50% of the CPTo of outer membranes became solubilized, but it showed limited stability and decreased malonyl-CoA sensitivity. Malonyl-CoA-inhibitability of CPTo was decreased also on exposure of outer membranes to phospholipase C. When outer membranes that had been exposed to octyl glucoside or to phospholipase C were subjected to a reconstitution procedure using asolectin liposomes, the malonyl-CoA-inhibitability of CPTo was restored. A role of phospholipids in the malonyl-CoA sensitivity of CPTo is thus indicated.  相似文献   

6.
7.
Carnitine palmitoyltransferase (CPT) 1A catalyzes the rate-limiting step in the transport of long chain acyl-CoAs from cytoplasm to the mitochondrial matrix by converting them to acylcarnitines. Located within the outer mitochondrial membrane, CPT1A activity is inhibited by malonyl-CoA, its allosteric inhibitor. In this study, we investigate for the first time the quaternary structure of rat CPT1A. Chemical cross-linking studies using intact mitochondria isolated from fed rat liver or from Saccharomyces cerevisiae expressing CPT1A show that CPT1A self-assembles into an oligomeric complex. Size exclusion chromatography experiments using solubilized mitochondrial extracts suggest that the fundamental unit of its quaternary structure is a trimer. When studied in blue native-PAGE, the CPT1A hexamer could be observed, however, suggesting that under these native conditions CPT1A trimers might be arranged as dimers. Moreover, the oligomeric state of CPT1A was found unchanged by starvation and by streptozotocin-induced diabetes, conditions characterized by changes in malonyl-CoA sensitivity of CPT1A. Finally, gel filtration analysis of several yeast-expressed chimeric CPTs demonstrates that the first 147 N-terminal residues of CPT1A, encompassing its two transmembrane segments, trigger trimerization independently of its catalytic C-terminal domain. Deletion of residues 1-82, including transmembrane 1, did not abrogate oligomerization, but the latter is limited to a trimer by the presence of the large catalytic C-terminal domain on the cytosolic face of mitochondria. Based on these findings, we proposed that the oligomeric structure of CPT1A would allow the newly formed acylcarnitines to gain direct access into the intermembrane space, hence facilitating substrate channeling.  相似文献   

8.
In the fed state, hyperthyroidism increased glucose utilization indices (GUIs) of skeletal muscles containing a lower proportion of oxidative fibres. Glycogen concentrations were unchanged, but active pyruvate dehydrogenase (PDHa) activities were decreased. Hyperthyroidism attenuated the effects of 48 h of starvation to decrease muscle GUI. Glycogen concentrations and PDHa activities after 48 h of starvation were low and similar in euthyroid and hyperthyroid rats. The increase in glucose uptake and phosphorylation relative to oxidation and storage in skeletal muscle induced by hyperthyroidism may contribute to increased glucose re-cycling in the fed hyperthyroid state and to glucose turnover in the starved hyperthyroid state.  相似文献   

9.
Treatment of rat liver mitochondrial membranes with cholate yields a soluble extract containing carnitine palmitoyltransferase (CPT) activity that is insensitive to malonyl-CoA. As found previously (I. Ghadiminejad and D. Saggerson (1990) FEBS Lett. 269, 406-408), addition of polyethylenen glycol 6000 (PEG 6000) to this extract conferred sensitivity to malonyl-CoA on the CPT. It is now shown that a sub-population of the CPT activity which is sedimentable at 7000 x g after addition of PEG 6000 is activated by malonyl-CoA, whereas the remainder is inhibited by malonyl-CoA. The presence of KCl increases the proportion of the activatable form of CPT. Possible physiological significance of this finding is discussed.  相似文献   

10.
Malonyl-CoA significantly increased the Km for L-carnitine of overt carnitine palmitoyltransferase in liver mitochondria from fed rats. This effect was observed when the molar palmitoyl-CoA/albumin concentration ratio was low (0.125-1.0), but not when it was higher (2.0). In the absence of malonyl-CoA, the Km for L-carnitine increased with increasing palmitoyl-CoA/albumin ratios. Malonyl-CoA did not increase the Km for L-carnitine in liver mitochondria from 24h-starved rats or in heart mitochondria from fed animals. The Km for L-carnitine of the latent form of carnitine palmitoyltransferase was 3-4 times that for the overt form of the enzyme. At low ratios of palmitoyl-CoA/albumin (0.5), the concentration of malonyl-CoA causing a 50% inhibition of overt carnitine palmitoyltransferase activity was decreased by 30% when assays with liver mitochondria from fed rats were performed at 100 microM-instead of 400 microM-carnitine. Such a decrease was not observed with liver mitochondria from starved animals. L-Carnitine displaced [14C]malonyl-CoA from liver mitochondrial binding sites. D-Carnitine was without effect. L-Carnitine did not displace [14C]malonyl-CoA from heart mitochondria. It is concluded that, under appropriate conditions, malonyl-CoA may decrease the effectiveness of L-carnitine as a substrate for the enzyme and that L-carnitine may decrease the effectiveness of malonyl-CoA to regulate the enzyme.  相似文献   

11.
12.
Solubilization of rat liver mitochondria in 5% Triton X-100 followed by chromatography on a hydroxylapatite column resulted in the identification of malonyl-CoA binding protein(s) distinct from a major carnitine palmitoyltransferase activity peak. Further purification of the malonyl-CoA binding protein(s) on an acyl-CoA affinity column followed by sodium dodecyl sulfate gel electrophoresis indicated proteins with Mr mass of 90 and 45-33 kDa. A purified liver malonyl-CoA binding fraction, which was devoid of carnitine palmitoyltransferase, and a soluble malonyl-CoA-insensitive carnitine palmitoyltransferase were reconstituted by dialysis in a liposome system. The enzyme activity in the reconstituted system was decreased by 50% in the presence of 100 microM malonyl-CoA. Rat liver mitochondria carnitine palmitoyltransferase may be composed of an easily dissociable catalytic unit and a malonyl-CoA sensitivity conferring regulatory component.  相似文献   

13.
Intact mitochondria and inverted submitochondrial vesicles were prepared from the liver of fed, starved (48 h) and streptozotocin-diabetic rats in order to characterize carnitine palmitoyltransferase kinetics and malonyl-CoA sensitivity in situ. In intact mitochondria, both starved and diabetic rats exhibited increased Vmax., increased Km for palmitoyl-CoA, and decreased sensitivity to malonyl-CoA inhibition. Inverted submitochondrial vesicles also showed increased Vmax. with starvation and diabetes, with no change in Km for either palmitoyl-CoA or carnitine. Inverted vesicles were uniformly less sensitive to malonyl-CoA regardless of treatment, and diabetes resulted in a further decrease in sensitivity. In part, differences in the response of carnitine palmitoyltransferase to starvation and diabetes may reside in differences in the membrane environment, as observed with Arrhenius plots, and the relation of enzyme activity and membrane fluidity. In all cases, whether rats were fed, starved or diabetic, and whether intact or inverted vesicles were examined, increasing membrane fluidity was associated with increasing activity. Malonyl-CoA was found to produce a decrease in intact mitochondrial membrane fluidity in the fed state, particularly at pH 7.0 or less. No effect was observed in intact mitochondria from starved or diabetic rats, or in inverted vesicles from any of the treatment groups. Through its effect on membrane fluidity, malonyl-CoA could regulate carnitine palmitoyltransferase activity on both surfaces of the inner membrane through an interaction with only the outer surface.  相似文献   

14.
15.
Carnitine/acylcarnitine translocase and carnitine palmitoyltransferase 2 are members of the carnitine system, which are responsible of the regulation of the mitochondrial CoA/acyl-CoA ratio and of supplying substrates for the ß-oxidation to mitochondria. This study, using cross-Linking reagent, Blue native electrophoresis and immunoprecipitation followed by detection with immunoblotting, shows conclusive evidence about the interaction between carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase supporting the channeling of acylcarnitines and carnitine at level of the inner mitochondrial membrane.  相似文献   

16.
Carnitine palmitoyltransferase I (CPT I) of rat liver mitochondria is an integral, polytopic protein of the outer membrane that is enriched at contact sites. As CPT I kinetics are highly dependent on its membrane environment, we have measured the kinetic parameters of CPT I present in rat liver submitochondrial membrane fractions enriched in either outer membrane or contact sites. The K(m) for palmitoyl-CoA was 2.4-fold higher for CPT I in outer membranes than that for the enzyme in contact sites. In addition, whereas in contact sites malonyl-CoA behaved as a competitive inhibitor of CPT I with respect to palmitoyl-CoA, in outer membranes malonyl-CoA inhibition was non-competitive. As a result of the combination of these changes, the IC(50) for malonyl-CoA was severalfold higher for CPT I in contact sites than for the enzyme in bulk outer membrane. The K(i) for malonyl-CoA, the K(m) for carnitine, and the catalytic constant of the enzyme were all unaffected. It is concluded that the different membrane environments in outer membranes and contact sites result in an altered conformation of L-CPT I that specifically affects the long-chain acyl-CoA binding site. The accompanying changes in the kinetics of the enzyme provide an additional potent mechanism for the regulation of L-CPT I activity.  相似文献   

17.
18.
Distler AM  Kerner J  Hoppel CL 《Proteomics》2008,8(19):4066-4082
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.  相似文献   

19.
Gamma-linolenic acid (GLA) is known to be an inhibitor of Walker 256 tumour growth in vivo and causes changes in both mitochondrial structure and cellular metabolism. The aim of the present study was to investigate in greater detail the changes in energy metabolism and ultrastructure induced by GLA in this tumour model. A diet containing 5.5% GLA, which is sufficient to cause a 45% decrease in tumour growth, was found to almost double the triacylglycerol (TAG) content of the tumour and to increase the quantity of 20:3 n-6, 20:4 n-6, 22:4 n-6 and 22:5 n-6 in the TAG fraction as determined by gas chromatography-mass spectrometry (GCMS) analysis. Morphometric analysis of the tumour by electron microscopy confirmed this increase in TAG content, identifying a doubling of lipid droplet content in the GLA dietary group. The surface density of mitochondrial cristae was reduced, along with a reduction in the number of contact sites (CS) and matrix granules. These three parameters are likely indicators of a reduction in mitochondrial metabolic activity. Measurement of hexokinase activity identified that much of the total hexokinase activity was in the mitochondrially bound form (66.5%) in the control tumour and that GLA caused a decrease in the amount of enzyme in the bound form (39.3%). The fatty acyl chain composition of the tumour mitochondrial subfractions, outer membranes (OM), CSs and inner membranes (IM) was determined by GCMS. All subfractions showed considerable increases in 20:3 n-6 and decreases in 18:1 n-9, 18:2 n-6 and 22:6 n-3, when exposed to GLA diet. These changes were reflected in a large increase in the n-6/n-3 ratio in the GLA OM vs. the control OM, 21.299 vs. 6.747, respectively. The maximal activity of OM carnitine palmitoyltransferase I (CPT I) was found to be decreased by 61.6% in the GLA diet group. This was accompanied by a decrease in malonyl CoA sensitivity and a decrease in affinity for 16:0 CoA substrate. Such changes in CPT I may be the cause of cytoplasmic acyl CoA accumulation seen in this tumour model. These effects, together with previously reported increases in lipid peroxidation, lead to the conclusion that GLA may cause inhibition of tumour cell growth through separate but interlinked pathways, all of which eventually lead to apoptosis and a decrease in tumour development. The influence of mitochondrial OM fatty acyl chain composition upon two important enzymes of energy metabolism, hexokinase and CPT I, both of which have been linked to apoptosis, is of considerable importance for future studies on fatty acid-induced cell death.  相似文献   

20.
The overt form of carnitine palmitoyltransferase (CPT1) in rat liver and heart mitochondria was inhibited by DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA. S-Methanesulphonyl-CoA inhibited liver CPT1. The inhibitory potency of DL-2-bromopalmitoyl-CoA was 17 times greater with liver than with heart CPT1. Inhibition of CPT1 by DL-2-bromopalmitoyl-CoA was unaffected by 5,5'-dithiobis-(2-nitrobenzoic acid) or (in liver) by starvation. In experiments in which DL-2-bromopalmitoyl-CoA displaced [14C]malonyl-CoA bound to liver mitochondria, the KD (competing) was 25 times the IC50 for inhibition of CPT1 providing evidence that the malonyl-CoA-binding site is unlikely to be the same as the acyl-CoA substrate site. Bromoacetyl-CoA inhibition of CPT1 was more potent in heart than in liver mitochondria and was diminished by 5,5'-dithiobis-(2-nitrobenzoic acid) or (in liver) by starvation. Bromoacetyl-CoA displaced bound [14C]malonyl-CoA from heart and liver mitochondria. In heart mitochondria this displacement was competitive with malonyl-CoA and was considerably facilitated by L-carnitine. In liver mitochondria this synergism between carnitine and bromoacetyl-CoA was not observed. It is suggested that bromoacetyl-CoA interacts with the malonyl-CoA-binding site of CPT1. L-Carnitine also facilitated the displacement by DL-2-bromopalmitoyl-CoA of [14C]malonyl-CoA from heart, but not from liver, mitochondria. DL-2-Bromopalmitoyl-CoA and bromoacetyl-CoA also inhibited overt carnitine octanoyl-transferase in liver and heart mitochondria. These findings are discussed in relation to inter-tissue differences in (a) the response of CPT1 activity to various inhibitors and (b) the relationship between high-affinity malonyl-CoA-binding sites and those sites for binding of L-carnitine and acyl-CoA substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号