首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioprocess and Biosystems Engineering - The mechanism and effect of C/N ratios on the aerobic granules simultaneous nitrification, denitrification and phosphorus removal (SNDPR) system are still...  相似文献   

2.
Phosphorus and nitrogen are the important eutrophication nutrients. They are removed in the anoxic/oxic reactor through simultaneous precipitation and biological nitrogen removal. The effect of alum a commonly used simultaneous precipitant on biological nitrification and denitrification are investigated in the present study. Simultaneous removal of phosphorus was carried out using the coagulant alum Al2(SO4)3·14H2O at 2.2 mol ratio. Before the start of simultaneous precipitation the nitrification rate of the A/O reactor was found to be 0.05 g N-NH4 +/g VSS/d. It starts to decrease with increase in coagulant dosage. The nitrification rate for alum dosage 97.13 mg/L was 0.38 g N- NH4 +/g VSS/d. There was no accumulation of nitrate in anoxic tank. The nitrogen removal efficiency of the reactor was affected and it fell from 88 to 78%. There was a slight decrease in effluent COD from 16∼20 mg/L to 8∼12 mg/L after the introduction of simultaneous precipitation into the reactor. The usage of alum as a simultaneous precipitant in the anoxic/oxic reactor was limited due to its inhibition on nitrification. Alum did not have any affect over denitrification process.  相似文献   

3.
The recently described process of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) has a great potential to save capital and operating costs for wastewater treatment plants. However, the presence of glycogen-accumulating organisms (GAOs) and the accumulation of nitrous oxide (N(2)O) can severely compromise the advantages of this process. In this study, these two issues were investigated using a lab-scale sequencing batch reactor performing SNDPR over a 5-month period. The reactor was highly enriched in polyphosphate-accumulating organisms (PAOs) and GAOs representing around 70% of the total microbial community. PAOs were the dominant population at all times and their abundance increased, while GAOs population decreased over the study period. Anoxic batch tests demonstrated that GAOs rather than denitrifying PAOs were responsible for denitrification. N(2)O accumulated from denitrification and more than half of the nitrogen supplied in a reactor cycle was released into the atmosphere as N(2)O. After mixing SNDPR sludge with other denitrifying sludge, N(2)O present in the bulk liquid was reduced immediately if external carbon was added. We therefore suggest that the N(2)O accumulation observed in the SNDPR reactor is an artefact of the low microbial diversity facilitated by the use of synthetic wastewater with only a single carbon source.  相似文献   

4.
In the present study a laboratory scale anoxic/oxic reactor was used to remove the important eutrophication nutrients such as phosphorus and nitrogen from synthetic domestic wastewater. Phosphorus was removed through simultaneous precipitation and was carried out using the coagulant ferrous sulphate FeSO4 · 7H2O. Total phosphorus in the effluent was controlled to below 1 mg/l using a ferrous to phosphorus molar ratio of 2.1. pH after the addition of coagulant plays a major role in determining the molar ratio of the precipitant. Nitrogen was removed biologically in the anoxic/oxic system and the effect of simultaneous precipitation on nitrification and denitrification was investigated. The nitrification rate of the system remained unaffected during simultaneous precipitation and varied from 0.046 to 0.059 g N–NH4 +/g VSS/day. Denitrification was complete and was not affected by the coagulation process. The nitrogen removal efficiency varied from 78% to 85%. COD removal efficiency was not affected during simultaneous precipitation and was varied from 94% to 98%. The highly efficient nitrogen removal in the presence of simultaneous precipitant ferrous sulphate makes the process an ideal option for nutrient removal.  相似文献   

5.
Heavy metal and radionuclide contamination presents a significant environmental problem worldwide. Precipitation of heavy metals on membranes of cells that secrete phosphate has been shown to be an effective method of reducing the volume of these wastes, thus reducing the cost of disposal. A consortium of organisms, some of which secrete large quantities of phosphate, was enriched in a laboratory-scale sequencing batch reactor performing Enhanced Biological Phosphorus Removal, a treatment process widely used for removing phosphorus. Organisms collected after the aerobic phase of this process secreted phosphate and precipitated greater than 98% of the uranyl from a 1.5 mM uranyl nitrate solution when supplemented with an organic acid as a carbon source under anaerobic conditions. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and fluorescence spectroscopy were used to identify the precipitate as membrane-associated uranyl phosphate, UO2HPO4.  相似文献   

6.
Liu Y  Shi H  Li W  Hou Y  He M 《Bioresource technology》2011,102(5):4008-4012
A study on the influence of chemical dosing on biological phosphorus and nitrogen removal was carried out through batch experimental tests by lab-scale and a full-scale wastewater treatment plant (employing a typical anaerobic-anoxic-oxic treatment). Results indicated that the inhibition of aluminum salt on biological phosphorus release and uptake processes is significant, as well as the inhibition of aluminum salt on Ammonia-Oxidizing Bacteria (AOB) is dominantly observed in the nitrification process and is recoverability. The inhibition of iron salt in biological phosphorus and nitrogen removal is weak, and only the inhibition of iron salt on phosphorus release at anaerobic periods emerge under large dosing. Evidence shows persistent inhibition from the accumulation of chemical doses in sludge mass. Intermittent chemical dosing proves recommendable for simultaneous chemical phosphorus removal.  相似文献   

7.
In the present study, an advanced sewage treatment process has been developed by incorporating excess sludge reduction and phosphorous recovery in an A2O-MBR process. The A2O-MBR reactor was operated at a flux of 17 LMH over a period of 210 days. The designed flux was increased stepwise over a period of two weeks. The reactor was operated at two different MLSS range. Thermo chemical digestion of sludge was carried out at a fixed pH (11) and temperature (75 °C) for 25% COD solubilisation. The released phosphorous was recovered by precipitation process and the organics was sent back to anoxic tank. The sludge digestion did not have any impact on COD and TP removal efficiency of the reactor. During the 210 days of reactor operation, the MBR maintained relatively constant transmembrane pressure. The results based on the study indicated that the proposed process configuration has potential to reduce the excess sludge production as well as it didn’t detoriated the treated water quality.  相似文献   

8.
This study evaluated the effect of sludge age on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. A membrane bioreactor with no separate anoxic volume was operated at a sludge age of 20 days under low dissolved oxygen concentration of 0.1-0.2 mg/L. Its performance was compared with the period when the sludge age was adjusted to 60 days. Floc size distribution, apparent viscosity, and nitrogen removal differed significantly, together with different biomass concentrations: nitrification was reduced to 40% while denitrification was almost complete. Modelling indicated that both nitrification and denitrification kinetics varied as a function of the sludge age. Calibrated values of half saturation coefficients were reduced when the sludge age was lowered to 20 days. Model simulation confirmed the validity of variable process kinetics for nitrogen removal, specifically set by the selected sludge age.  相似文献   

9.
The feasibility of nitrite accumulation in a pilot-scale A/O (anoxic/oxic) nitrogen removal plant treating domestic wastewater was investigated at various dissolved oxygen (DO) concentrations and pH levels. The results showed that the pH was not a useful operational parameter to realize nitrite accumulation. Significant nitrite accumulation was observed at the low DO concentration range of 0.3–0.8 mg/l and the maximum nitrite accumulation ratio of about 90% occurred at a DO concentration of 0.6 mg/l. This suggests a reduction of 22% in the oxygen consumption, and therefore a considerable saving in aeration. However, the nitrite accumulation was destroyed at the high DO concentration and the resumption was very slow. In addition, the average ammonia removal efficiency reached as high as 93% at the low DO level. Moreover, experimental results indicated that nitrogen could be removed by simultaneous nitrification and denitrification (SND) via nitrite in the aerobic zones at the low DO concentration, with the efficiency of 6–12%.  相似文献   

10.
The microbial diversity of a deteriorated biological phosphorus removal reactor was investigated by methods not requiring direct cultivation. The reactor was fed with media containing acetate and high levels of phosphate (P/C weight ratio, 8:100) but failed to completely remove phosphate in the effluent and showed very limited biological phosphorus removal activity. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA was used to investigate the bacterial diversity. Up to 11 DGGE bands representing at least 11 different sequence types were observed; DNA from the 6 most dominant of these bands was further isolated and sequenced. Comparative phylogenetic analysis of the partial 16S rRNA sequences suggested that one sequence type was affiliated with the alpha subclass of the Proteobacteria, one was associated with the Legionella group of the gamma subclass of the Proteobacteria, and the remaining four formed a novel group of the gamma subclass of the Proteobacteria with no close relationship to any previously described species. The novel group represented approximately 75% of the PCR-amplified DNA, based on the DGGE band intensities. Two oligonucleotide rRNA probes for this novel group were designed and used in a whole-cell hybridization analysis to investigate the abundance of this novel group in situ. The bacteria were coccoid and 3 to 4 microm in diameter and represented approximately 35% of the total population, suggesting a relatively close agreement with the results obtained by the PCR-based DGGE method. Further, based on electron microscopy and standard staining microscopic analysis, this novel group was able to accumulate granule inclusions, possibly consisting of polyhydroxyalkanoate, inside the cells.  相似文献   

11.
Modeling of the operation of sequential batch reactor (SBR) was performed to find out optimum design parameters for simultaneous removal of nitrogen and phosphorus in a small-scale wastewater treatment plant. The models were set up with material balances on SBR operation and Monod kinetics. The model parameters were obtained to best fit the experimental results in a small scale SBR. The models were useful in optimizing hydraulic retention time (HRT) and successfully simulated operations of SBR in a larger scale. Especially the model predicted well the reactions occurring in the filling period as well as the effect of dilution, and evaluated the performance of SBR process under diverse operating conditions.  相似文献   

12.
In this study, polyhydroxybutyrate (PHB) – a biodegradable plastics material – was produced by activated sludge performing enhanced biological phosphorus removal (EBPR) in batch experiments under anaerobic, aerobic and anaerobic/aerobic conditions. Under anaerobic conditions, the maximum PHB content of the dry biomass was 28.8% by weight, while under aerobic or anaerobic/aerobic conditions, the maximum PHB content was about 50%. The PHB production rate with respect to the volatile suspended solids (VSS) was: (i) 70 mg/(g VSS) h under aerobic conditions that followed anaerobic conditions, (ii) 156 mg/(g VSS) h under anaerobic condition, and (iii) 200 mg/(g VSS) h under aerobic conditions with energy also supplied from polyphosphate. A side stream, with initially anaerobic conditions for PHB accumulation and phosphorus release, and then aerobic conditions for PHB accumulation, was proposed. In this side stream, biomass with a high PHB content and a high PHB production rate could be both achieved.  相似文献   

13.
A sequencing batch membrane biofilm reactor (SBMBfR) was developed for simultaneous carbon, nitrogen, and phosphorus removal from wastewater. This reactor was composed of two functional parts: (1) a gas-permeable membrane on which a nitrifying biofilm formed and (2) a bulk solution in which bacteria, mainly denitrifying polyphosphate-accumulating organisms (DNPAOs), were suspended. The reactor was operated sequentially under anaerobic condition and then under membrane aeration condition in one cycle. During the anaerobic period, organic carbon was consumed by DNPAOs; this was accompanied by phosphate release. During the subsequent membrane aeration period, nitrifying bacteria utilized oxygen supplied directly to them from the inside of the membrane. Consequently, the nitrite and nitrate products diffused into the bulk solution, where they were used by DNPAOs as electron acceptors for phosphate uptake. In a long-term sequencing batch operation, the mean removal efficiencies of total organic carbon (TOC), total nitrogen (T-N), and total phosphorus (T-P) under steady-state condition were 99%, 96%, and 90%, respectively. In addition, fluorescence in situ hybridization (FISH) clearly demonstrated the difference in bacterial community structure between the membrane biofilm and the suspended sludge: ammonia-oxidizing bacteria belonging to the Nitrosomonas group were dominant in the region adjacent to the membrane throughout the operation, and the occupation ratio of the well-known polyphosphate-accumulating organism (PAO) Candidatus "Accumulibacter phosphates" in the suspended sludge gradually increased to a maximum of 37%.  相似文献   

14.
The goal of this research is to compare the metal binding characteristics of an anoxic selector activated sludge system and a conventional activated sludge system. Metal biosorption by biomass harvested from experimental systems was determined by a series of batch experiments. Heavy metals studied in this research were zinc, cadmium, and nickel. The sorption isotherm showed that the selector sludge had significantly higher sorption capacity than did the control sludge. Metal biosorption behavior closely followed a Freundlich isotherm model for equilibrium concentrations. ECP contents of biomass estimated by alkali extraction technique showed that ECP levels in the selector sludge significantly higher than that in the sludge harvested from the conventional system, indicating that the higher metal sorption capacity of selector sludge may be due to the selection of the ECP-producing bacteria (i.e., Zoogloca sp.) by the selector system.  相似文献   

15.
A bench-scale anaerobic–anoxic–oxic (A2O) bioreactor with steady denitrifying phosphorus removal performance was tested to determine the influence of influent C/N ratio (SCOD/TN) and C/P ratio (SCOD/TP) on biological nutrient removal for treating synthetic brewage wastewater; meanwhile, the spatial profiles of DO, pH and ORP sensors in such systems were investigated. The results showed that influent C/N ratio had significant effect on the TN, TP removal efficiencies and the ratio of anoxic to aerobic P uptake amount. The maximal TN and TP removal efficiencies could be achieved when influent C/N ratio was kept at about 7.1 and 5, respectively. Besides, the ratio of anoxic to aerobic P uptake amount was found to be linearly dependent on the influent C/N ratio with coefficient R 2 of 0.685 when total recirculation ratio was constant at 3.5. Influent C/P ratio had an important effect on the TP removal efficiency, while it hardly affected TN removal efficiency. In addition, the TP removal efficiency reached the maximum for influent C/P ratio of 42. On the other hand, it was also found that the typical profiles of DO, pH and ORP sensors could be observed, and they have similar trends at the different influent C/N ratio and C/P ratio. It was suggested that the operational state could be well known according to the changes of simple on-line sensors.  相似文献   

16.
17.
Chen H  Liu S  Yang F  Xue Y  Wang T 《Bioresource technology》2009,100(4):1548-1554
The simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process was validated to potentially remove ammonium and COD from wastewater in a single, oxygen-limited, non-woven rotating biological contactor (NRBC) reactor. An ammonium conversion efficiency of 79%, TN removal efficiency of 70% and COD removal efficiency of 94% were obtained with the nitrogen and COD loading rate of 0.69 kgN/m(3)d and 0.34 kg/m(3)d, respectively. Scanning electron microscopy (SEM) observation and fluorescence in situ hybridizations (FISH) analysis revealed the existence of the dominant groups of bacteria. As a result, the aerobic ammonia-oxidizing bacteria (AOB), with a spot of aerobic heterotrophic bacteria were mainly distributed in the aerobic outer part of the biofilm. However, ANAMMOX bacteria with denitrifying bacteria were present and active in the anaerobic inner part of the SNAD biofilm. These bacteria were found to exist in a dynamic equilibrium to achieve simultaneous nitrogen and COD removal in NRBC system.  相似文献   

18.
Aniline, a toxic, organic pollutant, occurs in a number of industrial effluents. Apart from carbonaceous oxygen demand, aniline imposes a nitrogenous oxygen demand, due to its nitrogen content, in excess of that required for cell growth. Incomplete biodegradation will result in ammonia production; this also exerts toxicity. Hence, nitrification of aniline should be ensured in the biological treatment before discharge into receiving streams. Aniline, however, is reported to inhibit the nitrification process. Aniline degradation was studied in laboratory continuous activated sludge with an acclimated culture developed in synthetic feed to determine the extent of complete biological degradation. Aniline-N (even at 400 mg/L aniline concentration)could be converted to nitrate-N with ammonium-N and nitrite-N formed as intermediates at a detention time of 24 h. The nitrification, however, was suppressed by aniline. The degradation of aniline to ammonia releases the suppression and the nitrification proceeds rapidly.  相似文献   

19.
Nitrate can affect phosphate release and lead to reduced efficiency of biological phosphorus removal process. The inhibition effect of remaining nitrate at the anaerobic/anoxic phases was investigated in a lab scale sequencing batch reactor. In this study the influence of denitrification process on reactor performance and phosphorus removal was examined. The experiments were carried out through simultaneous filling and decanting, mixing, mixing-aeration and settling modes. Glucose and acetate were used as carbon sources. The proposed treatment system was capable of removing approximately 80% of the influent PO4-P, 98% NH4-N and 97% COD at a SRT of 25 days. In the fill/decant phase, anoxic and anaerobic conditions prevailed and a large quantity of nitrate was removed in this stage. In the anoxic phase the remaining nitrate concentration was quickly reduced and a considerable amount of phosphate was released. This was attributed to the availability of acetate in this stage. For effective nitrogen and phosphate removal, a short anoxic phase was beneficial before an aerobic phase.  相似文献   

20.
This study studied the cultivation of granules from an expanded granular sludge bed reactor that simultaneously transforms sulfates, nitrates, and oxygen to elementary sulfur, nitrogen gas, and carbon dioxides, respectively. The living cells accumulate at the granule outer layers, as revealed by the multicolor staining and confocal laser scanning microscope technique. The microbial community comprises sulfate-reducing bacteria (SRB, Desulfomicrobium sp.), heterotrophic (Pseudomonas aeruginosa and Sulfurospirillum sp.), and autotrophic denitrifiers (Sulfurovum sp. and Paracoccus denitrificans) whose population dynamics at different sulfate and nitrate loading rates are monitored with the single-strand conformation polymorphism and denaturing gradient gel electrophoresis technique. The Desulfomicrobium sp. presents one of the dominating strains following reactor startup. At high sulfate and nitrate loading rates, the heterotrophic denitrifiers overcompete autotrophic denitrifiers to reduce SRB activities. Conversely, suddenly reducing nitrate loading rates completely removes the heterotrophic denitrifier Sulfurospirillum sp. from the granules and activates the autotrophic denitrifiers. The physical fixation of different groups of functional strains in granules fine-tunes the strains' activities, and hence the reactor performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号