首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Electrostatic control of proton pumping in cytochrome c oxidase   总被引:2,自引:0,他引:2  
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

2.
Elisa Fadda 《BBA》2008,1777(3):277-284
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

3.
4.
Proton translocation in the catalytic cycle of cytochrome c oxidase (CcO) proceeds sequentially in a four-stroke manner. Every electron donated by cytochrome c drives the enzyme from one of four relatively stable intermediates to another, and each of these transitions is coupled to proton translocation across the membrane, and to uptake of another proton for production of water in the catalytic site. Using cytochrome c oxidase from Paracoccus denitrificans we have studied the kinetics of electron transfer and electric potential generation during several such transitions, two of which are reported here. The extent of electric potential generation during initial electron equilibration between CuA and heme a confirms that this reaction is not kinetically linked to vectorial proton transfer, whereas oxidation of heme a is kinetically coupled to the main proton translocation events during functioning of the proton pump. We find that the rates and amplitudes in multiphase heme a oxidation are different in the OH-->EH and PM-->F steps of the catalytic cycle, and that this is reflected in the kinetics of electric potential generation. We discuss this difference in terms of different driving forces and relate our results, and data from the literature, to proposed mechanisms of proton pumping in cytochrome c oxidase.  相似文献   

5.
The current status of our knowledge about the mechanism of proton pumping by cytochrome oxidase is discussed. Significant progress has resulted from the study of site-directed mutants within the proton-conducting pathways of the bacterial oxidases. There appear to be two channels to facilitate proton translocation within the enzyme and they are important at different parts of the catalytic cycle. The use of hydrogen peroxide as an alternative substrate provides a very useful experimental tool to explore the enzymology of this system, and insights gained from this approach are described. Proton transfer is coupled to and appears to regulate the rate of electron transfer steps during turnover. It is proposed that the initial step in the reaction involves a proton transfer to the active site that is important to convert metal-ligated hydroxide to water, which can more rapidly dissociate from the metals and allow the reaction with dioxygen which, we propose, can bind the one-electron reduced heme-copper center. Coordinated movement of protons and electrons over both short and long distances within the enzyme appear to be important at different parts of the catalytic cycle. During the initial reduction of dioxygen, direct hydrogen transfer to form a tyrosyl radical at the active site seems likely. Subsequent steps can be effectively blocked by mutation of a residue at the surface of the protein, apparently preventing the entry of protons.  相似文献   

6.
The haem-copper oxidases comprise a large family of enzymes that is widespread among aerobic organisms. These remarkable membrane-bound proteins catalyse the respiratory reduction of dioxygen to water, and conserve free energy from this reaction by operating as proton pumps. The mechanism of redox-dependent proton translocation has been elusive despite the availability of high resolution crystal structures from several oxidases. Here, we discuss some recent as well as some older results that may shed light on this mechanism. We conclude that proton-pumping is initiated by vectorial proton transfer from a conserved glutamic acid (Glu242 in the bovine enzyme) to a proton acceptor above the haem groups, and that this primary event is mechanistically coupled to electron transfer from haem a to the binuclear haem a3/CuB centre. Subsequently, Glu242 is reprotonated from the negatively charged side of the membrane. Next this proton is transferred to the binuclear site to complete the chemistry, Glu242 is reprotonated once more, and the "prepumped" proton is ejected on the opposite side of the membrane. The different kinetics of electron-coupled proton transfer in different steps of the catalytic cycle may be related to differences in the driving force due to different Em values of the electron acceptor in the binuclear site.  相似文献   

7.
Liu Y  Edens GJ  Grzymski J  Mauzerall D 《Biochemistry》2008,47(29):7752-7761
The volume and enthalpy changes associated with proton translocation steps during the bacteriorhodopsin (BR) photocycle were determined by time-resolved photopressure measurements. The data at 25 degrees C show a prompt increase in volume followed by two further increases and one decrease to the original state to complete the cycle. These volume changes are decomposed into enthalpy and inherent volume changes. The positive enthalpy changes support the argument for inherent entropy-driven late steps in the BR photocycle [Ort, D. R., and Parson, W. M. (1979) Enthalpy changes during the photochemical cycle of bacteriorhodopsin. Biophys. J. 25, 355-364]. The volume change data can be interpreted by the electrostriction effect as charges are canceled and formed during the proton transfers. A simple glutamic acid-glutamate ion model or a diglutamate-arginine-protonated water charge-delocalized model for the proton-release complex (PRC) fit the data. A conformational change with a large positive volume change is required in the slower rise (M --> N of the optical cycle) step and is reversed in the decay (N --> O --> BR) steps. The large variation in the published values for both the volume and enthalpy changes is greatly ameliorated if the values are presented per absorbed photon instead of per mole of BR. Thus, it is the highly differing assumptions about the quantum or reaction yields that cause the variations in the published results.  相似文献   

8.
The paper presents a survey of time-resolved studies of charge translocation by cytochrome c oxidase coupled to transfer of the 1st, 2nd 3rd and 4th electrons in the catalytic cycle. Single-electron photoreduction experiments carried out with the A-class cytochrome c oxidases of aa(3) type from mitochondria, Rhodobacter sphaeroides and Paracoccus denitrificans as well as with the ba(3)-type oxidase from Thermus thermophilus indicate that the protonmotive mechanisms, although similar, may not be identical for different partial steps in the same enzyme species, as well as for the same single-electron transition in different oxidases. The pattern of charge translocation coupled to transfer of a single electron in the A-class oxidases confirms major predictions of the original model of proton pumping by cytochrome oxidase [Artzatbanov, V. Y., Konstantinov, A. A. and Skulachev, V.P. "Involvement of Intramitochondrial Protons in Redox Reactions of Cytochrome a." FEBS Lett. 87: 180-185]. The intermediates and partial electrogenic steps observed in the single-electron photoreduction experiments may be very different from those observed during oxidation of the fully reduced oxidase by O(2) in the "flow-flash" studies. .  相似文献   

9.
E Muneyuki  H Hirata 《FEBS letters》1988,234(2):455-458
Kinetic analysis of both proton translocating and steady-state ATP hydrolytic activities catalyzed by F0F1 ATPase in submitochondrial particles were carried out over an ATP concentration range of 1-2000 microM. The results were examined in relation to the prediction based on the alternate binding change model proposed by Gresser et al. [(1982) J. Biol. Chem. 257, 12030-12038] in which energy transduction occurs only at the tri-site catalytic cycle. The present results essentially contrast with the model and rather indicate that if the alternate binding mechanism holds for the ATP hydrolytic reaction, the proton translocation should be coupled to at least both bi-site and tri-site cycles.  相似文献   

10.
Cytochrome oxidase (COX) is considered to integrate in a single enzyme two consecutive mechanistically different redox activities--oxidase and peroxidase--that can be catalyzed elesewhere by separate hemoproteins. From the viewpoint of energy transduction, the enzyme is essentially a proton pumping peroxidase with a built-in auxiliary eu-oxidase module that activates oxygen and prepares in situ H2O2, a thermodynamically efficient but potentially hazardous electron acceptor for the proton pumping peroxidase. The eu-oxidase and peroxidase phases of the catalytic cycle may be performed by different structural states of COX. Resolution of the proton pumping peroxidase activity of COX and identification of individual charge translocation steps inherent in this reaction are discussed, as well as the specific role of the two input proton channels in proton translocation.  相似文献   

11.
Cytochrome c oxidase is the terminal complex of the respiratory chain in mitochondria and some aerobic bacteria and is responsible for most of the O(2) consumption in biology. The key reaction in the catalysis of O(2) reduction is O-O bond scission that requires four electrons and a proton. In our recent work (Gorbikova, E. A., Belevich, I., Wikstrom, M., and Verkhovsky, M. I. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 10733-10737), it was shown that the cross-linked Tyr-280 (Paracoccus denitrificans numbering) provides the proton for O-O bond cleavage. The deprotonated Tyr-280 must be reprotonated later on in the catalytic cycle to serve as a proton donor for the next oxygen reduction event. To find the reaction step at which the cross-linked Tyr-280 becomes reprotonated, all further steps of the catalytic cycle after O-O bond cleavage were followed by infrared spectroscopy. We found that complete reprotonation of the tyrosine is linked to the formation of the one-electron reduced state coupled to reduction of the Cu(B) site.  相似文献   

12.
The haem-copper oxidases comprise a large family of enzymes that is widespread among aerobic organisms. These remarkable membrane-bound proteins catalyse the respiratory reduction of dioxygen to water, and conserve free energy from this reaction by operating as proton pumps. The mechanism of redox-dependent proton translocation has been elusive despite the availability of high resolution crystal structures from several oxidases. Here, we discuss some recent as well as some older results that may shed light on this mechanism. We conclude that proton-pumping is initiated by vectorial proton transfer from a conserved glutamic acid (Glu242 in the bovine enzyme) to a proton acceptor above the haem groups, and that this primary event is mechanistically coupled to electron transfer from haem a to the binuclear haem a3/CuB centre. Subsequently, Glu242 is reprotonated from the negatively charged side of the membrane. Next this proton is transferred to the binuclear site to complete the chemistry, Glu242 is reprotonated once more, and the “prepumped” proton is ejected on the opposite side of the membrane. The different kinetics of electron-coupled proton transfer in different steps of the catalytic cycle may be related to differences in the driving force due to different Em values of the electron acceptor in the binuclear site.  相似文献   

13.
Plant-type ferredoxin-NADP(H) reductases (FNRs) are flavoenzymes harboring one molecule of noncovalently bound flavin adenine dinucleotide that catalyze reversible reactions between obligatory one-electron carriers and obligatory two-electron carriers. A glutamate next to the C-terminus is strictly conserved in FNR and has been proposed to function as proton donor/acceptor during catalysis. However, experimental studies of this proposed function led to contradicting conclusions about the role of this glutamate in the catalytic mechanism. In the present work, we study the titration behavior of the glutamate in the active site of FNR using theoretical methods. Protonation probabilities for maize FNR were computed for the reaction intermediates of the catalytic cycle by Poisson-Boltzmann electrostatic calculations and Metropolis Monte Carlo titration. The titration behavior of the highly conserved glutamate was found to vary depending on the bound substrates NADP(H) and ferredoxin and also on the redox states of these substrates and the flavin adenine dinucleotide. Our results support the involvement of the glutamate in the FNR catalytic mechanism not only as a proton donor but also as a key residue for stabilizing and destabilizing reaction intermediates. On the basis of our findings, we propose a model rationalizing the function of the glutamate in the reaction cycle, which allows reinterpretation of previous experimental results.  相似文献   

14.
In the photochemical cycle of bacteriorhodopsin, the light-driven proton pump of halobacteria, only the first step, the isomerization of the all-trans retinal to 13-cis, is dependent on illumination. Because the steps that accomplish the translocation of a proton during the ensuing reaction sequence of intermediate states are thermal reactions, they have direct analogies with such steps in other ion pumps. In a surprisingly large number of cases, the reactions of the photocycle could be studied without using light. This review recounts experiments of this kind, and what they contribute to understanding the transport mechanism of this pump, and perhaps indirectly other ion pumps as well.  相似文献   

15.
The proton-translocating ATPase of the thermophilic bacterium PS3 was reconstituted into planar phospholipid bilayers by the previously reported method (Hirata, H., Ohno, K., Sone, N., Kagawa, Y., and Hamamoto, T. (1986) J. Biol. Chem. 261, 9839-9843), and the relationship between the electric current induced by ATP and the concentration of ATP was examined. The magnitude of the electric current generated upon addition of ATP followed simple Michaelis-Menten type kinetics, and the Michaelis constant was found to be 0.14 mM under our conditions. This value is close to the values reported for F1- or F0F1-ATPase in its steady state catalytic cycle, indicating that the proton translocation is coupled to the steady state ATPase reaction. The relationship between the Km value and the membrane potential was also examined under the voltage-clamped condition, and we found that there was no apparent dependence of the Km on membrane voltage. These results together with the previous data suggest that the voltage dependence residues in some step that defines the apparent Vmax rather than Km in the reaction cycle, and proton translocation is not directly coupled to this ATP binding step.  相似文献   

16.
Since mitochondrial cytochrome c oxidase was found to be a redox-linked proton pump, most enzymes of the haem-copper oxidase family have been shown to share this function. Here, the most recent knowledge of how the individual reactions of the enzyme's catalytic cycle are coupled to proton translocation is reviewed. Two protons each are pumped during the oxidative and reductive halves of the cycle, respectively. An apparent controversy that concerns proton translocation during the reductive half is resolved. If the oxidised enzyme is allowed to relax in the absence of reductant, the binuclear haem-copper centre attains a state that lies outside the main catalytic cycle. Reduction of this form of the enzyme is not linked to proton translocation, but is necessary for a return to the main cycle. This phenomenon might be related to the previously described "pulsed" vs. "resting" and "fast" vs."slow" forms of haem-copper oxidases.  相似文献   

17.
Ohnishi T  Salerno JC 《FEBS letters》2005,579(21):4555-4561
A novel mechanism for proton/electron transfer is proposed for NADH-quinone oxidoreductase (complex I) based on the following findings: (1) EPR signals of the protein-bound fast-relaxing semiquinone anion radicals (abbreviated as Q(Nf)-) are observable only in the presence of proton-transmembrane electrochemical potential; (2) Iron-sulfur cluster N2 and Q(Nf)- are directly spin-coupled; and (3) The projection of the interspin vector extends only 5A along the membrane normal [Yano, T., Dunham, W.R. and Ohnishi, T. (2005) Biochemistry, 44, 1744-1754]. We propose that the proton pump is operated by redox-driven conformational changes of the quinone binding protein. In the input state, semiquinone is reduced to quinol, acquiring two protons from the N (matrix) side of the mitochondrial inner membrane and an electron from the low potential (NADH) side of the respiratory chain. A conformational change brings the protons into position for release at the P (inter-membrane space) side of the membrane via a proton-well. Concomitantly, an electron is donated to the quinone pool at the high potential side of the coupling site. The system then returns to the original state to repeat the cycle. This hypothesis provides a useful frame work for further investigation of the mechanism of proton translocation in complex I.  相似文献   

18.
Serine and cysteine proteases are structurally distinct families of proteolytic enzymes that exert analogous catalytic reactions. It is known that serine, histidine, and aspartate residues are involved in a putative catalytic triad of serine proteases whereas cysteine, histidine and aspartate (or asparagine) are involved in that of cysteine proteases. Although the overall three-dimensional structures of the two classes of proteases are quite different, a similar feature of the catalytic mechanism can be observed. We carried out a theoretical study in the gas phase on their two catalytic steps using ab initio molecular orbital calculation to evaluate the efficiency of each proteolytic activity. To examine the key aspects of the catalytic processes in their active sites, we employed simple molecular models, in which serine and histidine were substituted for by CH3OH and CH3SH, respectively, and aspartate by CH3CO2-. Molecular geometries of the two models were fully optimized by an energy-gradient method. The activation energies for proton transfer in the proteolytic steps and the total energies of each molecule in the intermediate states were calculated. These results revealed that the activation energy for proton transfer in the CH3SH-His-CH3CO2-system was smaller by 11 kcal mol-1than that of the CH3OH-His-CH3CO2-system. The calculated potential energy surface and the relative magnitudes of all steps in these reaction paths with regard to double proton transfer supported the above results. Taken together, these results indicated that the Cys-His-Asp proteolytic system might work more efficiently than the Ser-His Asp system.  相似文献   

19.
Bacterial flagella responsible for motility are driven by rotary motors powered by the electrochemical potential difference of specific ions across the cytoplasmic membrane. The stator of proton-driven flagellar motor converts proton influx into mechanical work. However, the energy conversion mechanism remains unclear. Here, we show that the motor is sensitive to intracellular proton concentration for high-speed rotation at low load, which was considerably impaired by lowering intracellular pH, while zero-speed torque was not affected. The change in extracellular pH did not show any effect. These results suggest that a high intracellular proton concentration decreases the rate of proton translocation and therefore that of the mechanochemical reaction cycle of the motor but not the actual torque generation step within the cycle by the stator-rotor interactions.  相似文献   

20.
Cytochrome c nitrite reductase catalyzes the six-electron, seven-proton reduction of nitrite to ammonia without release of any detectable reaction intermediate. This implies a unique flexibility of the active site combined with a finely tuned proton and electron delivery system. In the present work, we employed density functional theory to study the recharging of the active site with protons and electrons through the series of reaction intermediates based on nitrogen monoxide [Fe(II)-NO(+), Fe(II)-NO·, Fe(II)-NO(-), and Fe(II)-HNO]. The activation barriers for the various proton and electron transfer steps were estimated in the framework of Marcus theory. Using the barriers obtained, we simulated the kinetics of the reduction process. We found that the complex recharging process can be accomplished in two possible ways: either through two consecutive proton-coupled electron transfers (PCETs) or in the form of three consecutive elementary steps involving reduction, PCET, and protonation. Kinetic simulations revealed the recharging through two PCETs to be a means of overcoming the predicted deep energetic minimum that is calculated to occur at the stage of the Fe(II)-NO· intermediate. The radical transfer role for the active-site Tyr(218), as proposed in the literature, cannot be confirmed on the basis of our calculations. The role of the highly conserved calcium located in the direct proximity of the active site in proton delivery has also been studied. It was found to play an important role in the substrate conversion through the facilitation of the proton transfer steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号