首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assays using living cells provide an effective means to generate activity measurements of toxins, especially in situations where the toxins are part of a complex mixture or in an unfamiliar form such as natural or synthetic derivatives or bioactive metabolites. An important step in the refinement of cell based assays is to simplify the cellular reactions needed or required to generate the functional response of interest. Advances in the engineering of functional responses in cells provide a means to direct the response to given toxins. In this report, we describe the homogeneous high level expression of the initial target for brevetoxin, the voltage dependent sodium channel in human embryonic kidney cells (HEK-293). HEK cells stably transfected with a 6.208 kb cDNA of human heart voltage-dependent Na(+) channel (hH1a) were examined as an alternative to mouse neuroblastoma cells (N2A). The HEK-hH1a cells showed a reduced dependence on cofactors, increased sensitivity to brevetoxin and a useful means to assure absolute selectivity to the sodium channel. We next assessed the assay in a reporter gene format. Expression of a panel of minimal response elements as well as the c-fos promoter failed to provide a response to brevetoxin, indicating that the HEK cells lack a necessary intermediate signaling component. The expression of voltage dependent sodium channels in HEK cells is anticipated to provide enhanced performance for cell-based detection of toxins for drug and natural product discovery, biomonitoring and environmental monitoring.  相似文献   

2.
The binding of 125I-labeled derivatives of scorpion toxin and sea anemone toxin to tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied. Specific binding of 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin was each blocked by either native scorpion toxin or native sea anemone toxin. K0.5 for block of binding by several polypeptide toxins was closely correlated with K0.5 for enhancement of sodium channel activation in rat muscle cells. These results directly demonstrate binding of sea anemone toxin and scorpion toxin to a common receptor site on the sodium channel. Binding of both 125I-labeled toxin derivatives is enhanced by the alkaloids aconitine and batrachotoxin due to a decrease in KD for polypeptide toxin. Enhancement of polypeptide toxin binding by aconitine and batrachotoxin is precisely correlated with persistent activation of sodium channels by the alkaloid toxins consistent with the conclusion that there is allosteric coupling between receptor sites for alkaloid and polypeptide toxins on the sodium channel. The binding of both 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin is reduced by depolarization due to a voltage-dependent increase in KD. Scorpion toxin binding is more voltage-sensitive than sea anemone toxin binding. Our results directly demonstrate voltage-dependent binding of both scorpion toxin and sea anemone toxin to a common receptor site on the sodium channel and introduce the 125I-labeled polypeptide toxin derivatives as specific binding probes of tetrodotoxin-insensitive sodium channels in cultured muscle cells.  相似文献   

3.
Alpha scorpion toxins bind to receptor site 3 on voltage-dependent sodium channels and inhibit their inactivation. The alpha-scorpion toxin BotIII is the most toxic protein of Buthus occitanus tunetanus. Its sequence differs only by three amino acid residues from that of AahII, the most active alpha-toxin. Due to their high affinity and selectivity for mammalian sodium channels, BotIII and AahII represent powerful tools for studying the molecular determinants of specificity for voltage-dependent sodium channels. Sequence analysis of BotIII gene has revealed two exons separated by a 381-bp intron and a signal peptide of 19 amino acids. We succeeded in expressing BotIII in significantly higher amounts than AahII the only expressed strict alpha anti-mammalian scorpion toxin reported in the literature. We have also modified specific amino acid residues of BotIII. The recombinant and the natural toxins differ by the amidation of the C-terminal residue. Toxicity and binding experiments indicated: (a) the affinity of rBotIII-OH and rAahII-OH (rBotIII-OH with the 3 mutations R10V, V51L, N64H) for the voltage-dependent sodium channels is reduced compared to the natural toxins. This data revealed the important role of the C-terminal amidation for the biological activity of BotIII and AahII; (b) the single mutation N64H is responsible for the difference of toxicity and affinity between rBotIII-OH and rAahII-OH; (c) the addition of the sequence GR to rBotIII-OH leads to the loss of biological activity. This study is in agreement with the important role attributed to the C-terminal sequence of alpha-toxins in their interaction with sodium channels receptors.  相似文献   

4.
To prevent the consumption of bivalves contaminated with paralytic shellfish poisoning (PSP), toxin levels in seafood products are estimated by using the official mouse bioassay. Because of the limitations of this bioassay other methods of monitoring toxins are clearly needed. We have developed a test to screen for PSP toxins based on its functional activity; the toxins bind to the voltage-gated Na+ channels and block their activity. The method is a fluorimetric assay that allows quantitation of the toxins by detecting changes in the membrane potential of human excitable cells. This assay gives an estimate of toxicity, since each toxin present in the sample binds to sodium channels with an affinity which is proportional to its intrinsic toxic potency. The detection limits for paralytic shellfish toxins were found to be 1 ng saxitoxin equivalents/ml compared to the regulatory limit threshold of 400 ng/ml (equivalent to 80 microg/100 g) used in most countries. Our results indicate that this fluorescent assay is a specific, very sensitive, rapid, and reliable method of monitoring PSP toxin levels in samples from seafood products and toxic algae.  相似文献   

5.
The antioxidant enzyme CuZn superoxide dismutase (SOD1) is secreted by many cell lines. However, it is not clear whether SOD1 secretion is only constitutive or can be regulated in an activity-dependent fashion. Using rat pituitary GH(3) cells that express voltage-dependent calcium channels and are subjected to Ca(2+) oscillations, we found that treatment with high K(+)-induced SOD1 release that was significantly higher than the constitutive secretion. Evoked SOD1 release was correlated with depolarization-dependent calcium influx and was virtually abolished by removal of extracellular calcium with EGTA or by pre-incubation of GH(3) cells with Botulinum toxin A that cleaves the SNARE protein SNAP-25. Immunofluorescence experiments performed in GH(3) cells and rat brain synaptosomes showed that K(+)-depolarization induced a marked depletion of intracellular SOD1 immunoreactivity, an effect that was again abolished in the absence of extracellular calcium or after treatment with Botulinum toxin A. Subcellular fractionation analysis showed that SOD1 was present in large dense core vesicles. These data clearly show that, in addition to the constitutive SOD1 secretion, depolarization induces an additional rapid calcium-dependent SOD1 release in GH(3) cells and in rat brain synaptosomes. This likely occurs through exocytosis from SOD1-containing vesicles operated by the SNARE complex.  相似文献   

6.
The signal transduction pathways of the dopamine-D1 receptor were investigated in two cell types stably transfected with the human D1 receptor cDNA, rat pituitary GH4C1 cells (GH4-hD1), and mouse Ltk-fibroblast cells (L-hD1). In both GH4-hD1 and L-hD1 cell lines, stimulation of the dopamine-D1 receptor induced a marked increase in cAMP accumulation. In addition, dopamine potentiated activation of L-type voltage-dependent calcium channels in a cAMP-dependent manner in GH4-hD1 cells. However, in L-hD1 cells, dopamine increased cytosolic free calcium concentrations ([Ca++]i) by mobilization of intracellular calcium rather than by calcium influx. This effect was correlated with a dopamine-induced enhancement of phospholipase C activity in L-hD1 cells. Pretreatment (24 h) with cholera toxin (CTX) was used to maximally activate the GTP-binding protein (G protein) Gs, causing a maximal elevation of cAMP levels and uncoupling the D1 receptor from Gs. The described actions of dopamine in both cell lines were abolished by pretreatment with CTX, indicating that CTX substrates (e.g. Gs) may mediate these actions. The blockade by CTX was not due to CTX-induced elevation of cAMP, since pretreatment with forskolin or 8-bromo-cAMP to activate cAMP-dependent protein kinase did not inhibit dopamine actions nor alter basal [Ca++]i. Pretreatment (1-3 h) of L-hD1 cells with forskolin (10 microM) or 8-bromo-cAMP (5 mM) altered neither the basal activity of phospholipase C nor basal [Ca++]i in L-hD1 cells but greatly enhanced the dopamine-induced increase of phosphatidyl inositol turnover and [Ca++]i. From these results we conclude that: 1) the dopamine-D1 receptor induces multiple and cell-specific signals, including elevation of cAMP levels in both GH and L cells, cAMP-dependent activation and potentiation of opening of L-type voltage-dependent calcium channel in GH cells, and a novel phosphatidyl inositol-linked mobilization of cellular calcium in L cells; 2) coupling of the D1 receptor to these responses involves CTX-sensitive proteins, possibly Gs; and 3) acute preactivation of cAMP-dependent protein kinase can markedly enhance, rather than attenuate, certain pathways of dopamine-D1 transmembrane signaling.  相似文献   

7.
Ruta V  MacKinnon R 《Biochemistry》2004,43(31):10071-10079
A variety of venomous animals produce small protein toxins that impair the function of voltage-dependent cation channels by affecting the motions of the voltage-sensor domains and altering the energetics of the opening of the channel. In this study, we investigate the location of the receptor for tarantula venom voltage-sensor toxins on the voltage-dependent K+ channel from Aeropyrum pernix (KvAP), an archeabacterial channel that is functionally inhibited by members of this toxin family. We show that it is possible to purify the same set of toxins from venom of the tarantula Grammostola spatulata using either the purified KvAP voltage-sensor domain or the full-length KvAP channel. The equivalence of toxin retention profiles for the two channel proteins implies that the tarantula voltage-sensor toxin receptor resides exclusively on the voltage-sensor domain and that the pore is not required for the toxin-channel interaction. We have identified and characterized the functional properties of a subset of the tarantula toxins that bind to the KvAP voltage-sensor domain. Some of these toxins, VSTX1 and GSMTX4, have been previously isolated, while others, VSTX2 and VSTX3, are new members of the tarantula voltage-sensor toxin family. Some but not all toxins that bind to the voltage-sensor domain affect voltage-dependent gating of KvAP channels in lipid membranes.  相似文献   

8.
Interaction of Li+ with the voltage-dependent Na+ channel has been analyzed in neuroblastoma X glioma hybrid cells. The cells were able to generate action potentials in media containing Li+ instead of Na+. The uptake of Li+ into the hybrid cells was investigated for the pharmacological analysis of Li+ permeation through voltage-dependent Na+ channels. Veratridine and aconitine increased the uptake of Li+ to the same degree (EC50 30 microM). This increase was blocked by tetrodotoxin (IC50 20 nM). Veratridine and aconitine did not act synergistically; however, the veratridine-stimulated influx was further enhanced by the toxin of the scorpion Leiurus quinquestriatus (EC50 0.06 micrograms/ml). This stimulation was also blocked by tetrodotoxin. Thus, the voltage-dependent Na+ channel of the hybrid cells accepts both Li+ and Na+ in a similar manner.  相似文献   

9.
10.
Sea anemones are a rich source of two classes of peptide toxins, sodium channel toxins and potassium channel toxins, which have been or will be useful tools for studying the structure and function of specific ion channels. Most of the known sodium channel toxins delay channel inactivation by binding to the receptor site 3 and most of the known potassium channel toxins selectively inhibit Kv1 channels. The following peptide toxins are functionally unique among the known sodium or potassium channel toxins: APETx2, which inhibits acid-sensing ion channels in sensory neurons; BDS-I and II, which show selectivity for Kv3.4 channels and APETx1, which inhibits human ether-a-go-go-related gene potassium channels. In addition, structurally novel peptide toxins, such as an epidermal growth factor (EGF)-like toxin (gigantoxin I), have also been isolated from some sea anemones although their functions remain to be clarified.  相似文献   

11.
To study the regulation of insulin gene expression by physiological regulators, primary cultures of rat islet cells were transfected with portions of the rat insulin I gene 5'-flanking sequence linked to the reporter gene chloramphenicol acetyltransferase (CAT). Incubation of the cells in increasing glucose concentrations led to a parallel increase in both CAT activity and CAT mRNA levels. Pretreatment of the cells with the beta-cell-specific toxin streptozotocin reduced CAT activity 97%. Beta-Cell-specific expression of CAT was also demonstrated by co-staining the transfected cells with antisera to both CAT and insulin. Experiments showing a reduction in the response to glucose in the presence of the calcium channel blocker verapamil suggest that calcium plays a role in the glucose response, possibly via regulation of factors interacting with this limited portion of the insulin gene.  相似文献   

12.
We examined the effects of Pandinus imperator scorpion venom on voltage-gated potassium channels in cultured clonal rat anterior pituitary cells (GH3 cells) using the gigohm-seal voltage-clamp method in the whole-cell configuration. We found that Pandinus venom blocks the voltage-gated potassium channels of GH3 cells in a voltage-dependent and dose-dependent manner. Crude venom in concentrations of 50-500 micrograms/ml produced 50-70% block of potassium currents measured at -20 mV, compared with 25-60% block measured at +50 mV. The venom both decreased the peak potassium current and shifted the voltage dependence of potassium current activation to more positive potentials. Pandinus venom affected potassium channel kinetics by slowing channel opening, speeding deactivation slightly, and increasing inactivation rates. Potassium currents in cells exposed to Pandinus venom did not recover control amplitudes or kinetics even after 20-40 min of washing with venom-free solution. The concentration dependence of crude venom block indicates that the toxins it contains are effective in the nanomolar range of concentrations. The effects of Pandinus venom were mimicked by zinc at concentrations less than or equal to 0.2 mM. Block of potassium current by zinc was voltage dependent and resembled Pandinus venom block, except that block by zinc was rapidly reversible. Since zinc is found in crude Pandinus venom, it could be important in the interaction of the venom with the potassium channel. We conclude that Pandinus venom contains toxins that bind tightly to voltage-dependent potassium channels in GH3 cells. Because of its high affinity for voltage-gated potassium channels and its irreversibility, Pandinus venom may be useful in the isolation, mapping, and characterization of voltage-gated potassium channels.  相似文献   

13.
The membrane of immature Xenopus oocytes is known to possess a peculiar type of sodium channels, which are not activatable unless the membrane has been depolarized for some time. Once induced by a long-lasting depolarization, the channels behave like voltage-dependent channels, but they slowly activate and apparently do not inactivate. In addition, these channels were shown to be insensitive to the toxins classically used to inhibit the voltage-dependent Na+ channels. The effects of lidocaine on these slow Na+ channels were investigated using current-and voltage-clamped oocytes. Lidocaine reversibly blocked the channels when they were in their open configuration, but not when the channels were in their closed state. The concentration of lidocaine required for half-inhibition of the slow inward current was 270 +/- 67 micromol/l. The current/voltage relationships indicated that lidocaine blocked the sodium current (inward as well as outward) for all the potentials investigated. At a concentration of 0.3 mmol/l, lidocaine caused a shift of 5 +/- 1 mV of the activation curve. This suggests that the gating properties of the channels were alterated. The effect of lidocaine was found to be non-selective since at least two other channels were affected by the drug, namely the voltage-dependent calcium channels and the monovalent non-selective channels.  相似文献   

14.
超极化活化环核苷酸门控(hyperpolarization-activated cyclic-nucleotide-gated,HCN)通道参与调制心脏跳动的节律和速率。与HCN1和HCN2有所不同,慢通道HCN4可能不存在电压依赖的滞后现象。本研究采用单细胞膜片钳方法,在稳定转染hHCN4的HEK293细胞上进行电生理记录,观察hHCN4通道是否存在滞后现象,以及cAMP对其的调制作用;同时采用实时定量RT-PCR方法检测窦房结和心房组织中HCNs的表达。电压钳实验结果显示hHCN4电流(Ih)激活随着保持电位超极化的变化而向去极化方向移动。三角电位变化钳(triangular ramp)和动作电位钳的结果也显示了hHCN4的滞后现象。cAMP增加Ih电流幅度,且使电流激活向去极化方向移动,从而改变内源性hHCN4滞后行为。RT-PCR结果显示,人窦房结组织主要表达HCN4,占75%,HCN1占21%,HCN2占3%,HCN3占0.7%。以上结果提示,人窦房结组织主要表达HCN4亚型,hHCN4的Ih存在电压依赖性的滞后现象,且受cAMP调制。由此推断,hHCN4通道的滞后现象可能在窦房结起搏活动中起到了关键作用。  相似文献   

15.
Animal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif. We have solved the solution structure of Phrixotoxin 1, a gating modifier of Kv4 potassium channels. Analysis of the molecular surface and the electrostatic anisotropy of Phrixotoxin 1 and of other toxins acting on voltage-dependent potassium channels allowed us to propose a toxin interacting surface that encompasses both the surface from which the dipole moment emerges and a neighboring hydrophobic surface rich in aromatic residues.  相似文献   

16.
Calcium currents from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the "whole-cell" voltage clamp technique. An inward current characterized by large amplitude and slow inactivation decay was induced when the extracellular Ca2+ concentration was reduced by EGTA. This current was suppressed by extracellular Na+ removal, or by calcium antagonists, and increased by epinephrine and BAY K 8644. These findings suggest that this current is carried by sodium ions through Ca channels. Both Ca and Na currents through calcium channels were irreversibly blocked by omega-conotoxin. Complete blockade developed 10-15 minutes after the toxin introduction in the extracellular solution. Blockade of Na currents through calcium channels was characterized by a transient increase of current amplitude without any changes in its kinetics and voltage-dependent properties. Structural differences between calcium channels in rat and guinea-pig and frog cardiomyocytes were suggested.  相似文献   

17.
A quantitative assay for sodium channel blocking toxins such as tetrodotoxin and saxitoxin has been developed for use with a microtitre plate reader. Mouse neuroblastoma cells, which die rapidly in the presence of ouabain and veratridine, were protected by tetrodotoxin; surviving cells were detected by their uptake of the vital dye Neutral red which was quantified with a microtitre plate reader at 540 nm. A sigmoidal dose response curve was obtained and tetrodotoxin concentrations were readily measured over the range 10 nM to 500 nM (3.2-160 ng/ml). With this method, sodium channel blocking toxins were detected directly, without processing or concentration, in culture supernates of several marine bacteria, including Shewanella alga, Alteromonas tetraodonis, Listonella (Vibrio) pelagia, V. alginolyticus, V. anguillarum and V. tubiashi. Culture supernates of Shewanella alga contained up to 510 ng/ml of sodium channel blocking toxin (using tetrodotoxin as a standard).  相似文献   

18.
1. Depolarization of excitable cells of the central nervous system results in the formation of the second messengers cyclic AMP, cyclic GMP, inositol phosphates, and diacylglycerides. 2. Depolarization-evoked accumulation of cyclic AMP in brain preparations can be accounted for mainly by the release of adenosine, which subsequently interacts with stimulatory adenosine receptor linked to adenylate cyclase. 3. Depolarization-evoked formation of cyclic GMP in brain preparations is linked to activation of voltage-dependent calcium channels, presumably leading to activation of guanylate cyclase by calcium ions. 4. In brain slices depolarization-evoked stimulation of phosphoinositide breakdown and subsequent formation of inositol phosphates and diacylglycerides are linked to activation of voltage-dependent calcium channels, which are sensitive to dihydropyridines, presumably leading to activation of phospholipase(s) C by calcium ions. 5. In the synaptoneurosome preparation depolarization-evoked stimulation of phosphoinositide breakdown does not involve activation of dihydropyridine-sensitive calcium channels and, instead, appears to be regulated primarily by the intracellular concentration of sodium ions. Thus, agents that induce increases in intracellular sodium--such as toxins that open or delay inactivation of voltage-dependent sodium channels; ouabain, an inhibitor of Na+/K+ ATPase that transports sodium outward and a sodium ionophore--all stimulate phosphoinositide breakdown. Mechanistically, increases in intracellular sodium either might directly affect phospholipase(s) C or might lead to influx of calcium ions through Na+/Ca2+ transporters. 6. Depolarization-evoked stimulation of cyclic AMP formation and phosphoinositide breakdown can exhibit potentiative interactions with responses to receptor agonists, thereby providing mechanisms for modulation of receptor responses by neuronal activity. 7. Since all these second messengers can induce phosphorylation of ion channels through the activation of specific kinases, it is proposed that depolarization-evoked formation of second messengers represents a putative feedback mechanism to regulate ion fluxes in excitable cells.  相似文献   

19.
Human D3 dopamine receptor DNA was stably transfected into GH4C1 pituitary cells. Displacement of iodosulpiride binding in hD3 transfected cells (Kd = 0.3 nM, Bmax = 89 fmol/mg protein) by dopaminergic ligands was indistinguishable from that of hD3 receptors in CHO cells. Only two clonal cell lines exhibited weak GppNHp-dependent shifts in [3H]N-0437 binding, and these were used for functional assays. Neither arachidonic acid metabolism, cAMP levels, inositol phosphate turnover, intracellular calcium, or potassium currents were consistently affected by dopamine (1-10 microM). The paucity of responses indicates that human D3 receptors do not couple efficiently to these second messengers in GH4C1 cells.  相似文献   

20.
Yao J  Chen X  Li H  Zhou Y  Yao L  Wu G  Chen X  Zhang N  Zhou Z  Xu T  Wu H  Ding J 《The Journal of biological chemistry》2005,280(15):14819-14828
A novel "long chain" toxin BmP09 has been purified and characterized from the venom of the Chinese scorpion Buthus martensi Karsch. The toxin BmP09 is composed of 66 amino acid residues, including eight cysteines, with a mass of 7721.0 Da. Compared with the B. martensi Karsch AS-1 as a Na(+) channel blocker (7704.8 Da), the BmP09 has an exclusive difference in sequence by an oxidative modification at the C terminus. The sulfoxide Met-66 at the C terminus brought the peptide a dramatic switch from a Na(+) channel blocker toaK(+) channel blocker. Upon probing the targets of the toxin BmP09 on the isolated mouse adrenal medulla chromaffin cells, where a variety of ion channels coexists, we found that the toxin BmP09 specifically blocked large conductance Ca(2+)- and voltage-dependent K(+) channels (BK) but not Na(+) channels at a range of 100 nm concentration. This was further confirmed by blocking directly the BK channels encoded with mSlo1 alpha-subunits in Xenopus oocytes. The half-maximum concentration EC(50) of BmP09 was 27 nm, and the Hill coefficient was 1.8. In outside-out patches, the 100 nm BmP09 reduced approximately 70% currents of BK channels without affecting the single-channel conductance. In comparison with the "short chain" scorpion peptide toxins such as Charybdotoxin, the toxin BmP09 behaves much better in specificity and reversibility, and thus it will be a more efficient tool for studying BK channels. A three-dimensional simulation between a BmP09 toxin and an mSlo channel shows that the Lys-41 in BmP09 lies at the center of the interface and plugs into the entrance of the channel pore. The stable binding between the toxin BmP09 and the BK channel is favored by aromatic pi -pi interactions around the center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号