首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroidectomy is known to enhance fat cell phosphodiesterase activity; as a result, the response to lipolytic hormones is markedly reduced. Thyroidectomy also stimulates overall lipogenesis and the uptake of glucose: the present experiments investigated whether there was a correlation between cyclic AMP and glucose uptake. The parameter measured was the transport and phosphorylation (uptake) of deoxy-D-glucose in the presence of two modifiers of the cyclic AMP pool: phosphodiesterase inhibitors and the analogue, dibutyryl cyclic AMP. The inhibition by methylxanthines and dibutyryl cyclic AMP of deoxy-D-glucose uptake observed, was the same in fat cells from normal and thyroidectomized rats: the latter nonetheless still maintained their enhanced glucose uptake. It was therefore concluded that thyroid hormones and cyclic AMP control this step by different, separate pathways. Insulin, well known for its lipogenic effect, enhanced deoxy-D-glucose uptake in fat cells from both normal and thyroidectomized rats to the same extent (about 40%). An additive effect of thyroidectomy and insulin on glucose uptake was thus demonstrated. These results imply that glucose uptake in the adipocyte is controlled by at least three factors: thyroid hormones, cyclic AMP and insulin, each of which can act independently. Maximum glucose uptake is achieved in the presence of a combination of low concentrations of cyclic AMP, of insulin, and in the absence of thyroid hormones.  相似文献   

2.
To study the role of membrane SH-groups in glucose transport of isolated rat fat cells we compared the effects of a small organic mercurial reagent p-CMB with those of a large p--CMB-derivative -- p-CMB-Dextran, MW 10.000 --. It could be shown that both compounds were of almost identical reactivity on fat cell homogenate metabolism. When applied to intact fat cells uncoupled p--CMB showed an (1) insulin like enhancement of 14C incorporation from (U-14C) glucose into CO2 and triglyceride, (2) inhibition of the insulin-stimulatory effect on these parameters and (3) inhibition of basal glucose uptake dependent on the concentrations used. Identical concentrations of p-CMB-Dextran, however, failed to influence basal glucose uptake as well as the insulin mediated increase in glucose metabolism.  相似文献   

3.
This study examined the effects of aging, exercise training, and food restriction on epididymal fat cell size and resistance to insulin in rats. The exercise group was given access to voluntary running wheels at age 6 mo. The rats were studied at ages 12 and 28 mo. Sedentary free-eating (SFE) rats were obese and their fat cells were extremely insulin resistant, showing minimal increases in glucose oxidation and 2-deoxy-D-glucose (2-DOG) uptake in response to high insulin concentrations. The runners' adipocytes were smaller and had a greater responsiveness to insulin (approximately 9-fold for 2-DOG uptake and approximately 30-fold for glucose oxidation) than those of the SFE rats. Sedentary rats that were food restricted to keep their body weights the same as those of the runners had fat cells that were intermediate both in size and insulin responsiveness relative to those of the SFE rats and runners. There was a close correlation between fat cell size and responsiveness to insulin of 2-DOG uptake and glucose oxidation independent of age. There were no significant differences in fat cell size, insulin sensitivity, or insulin responsiveness between the adult (12 mo) and old (28 mo) rats in the same treatment groups. We conclude that aging alone has little or no effect on the responsiveness to insulin of glucose metabolism in fat cells and that the insulin resistance of adipocytes from obese older rats is due to fat cell hypertrophy, not aging. Exercise is effective in protecting against development of fat cell hypertrophy and insulin resistance.  相似文献   

4.
Glucocorticoids inhibit glucose utilization by fat cells. The possibility that this effect results from altered glucose transport was investigated using an oil-centrifugation technique which allows a rapid (within 45 s) estimation of glucose or 3-O-methylglucose uptake by isolated fat cells. At high concentration (greater than 25 muM), dexamethasone inhibited glucose uptake within 1 min of its addition to fat cells. Efflux of 3-O-methylglucose was also impaired by 0.1 mM dexamethasone. However, diminished glucose uptake was not a specific effect of glucocorticoids; high concentrations (0.1 mM) of 17beta-estradiol, progesterone, and deoxycorticosterone produced a similar response in adipocytes. At a more physiologic steroid concentration (0.1 muM), glucocorticoids inhibited glucose uptake in a time-dependent manner (maximum effect in 1 to 2 hours). This effect was specific for glucocorticoids since, under these conditions, glucose uptake was not changed by the non-glucocorticoid steroids. Lineweaver-Burk analysis showed that 0.1 muM dexamethasone treatment produced a decrease in Vmax for glucose uptake but did not change the Ku. Hexokinase activity and ATP levels were not altered by this treatment, suggesting that processes involved in glucose phosphorylation were not affected. Dexamethasone treatment also caused a reduction in uptake of 3-O-methylglucose when assayed using a low sugar concentration (0.1 mM). At a high concentration (10 mM), uptake of the methyl sugar was only slightly less than normal in treated cells. Stimulation by insulin markedly enhanced uptake of glucose and 3-O-methylglucose by both treated and untreated cells. At a low hexose concentration (0.1 mM) and in the presence of insulin, sugar uptake by dexamethasone-treated cells was slightly less than control cells. Stimulation by insulin did however completely overcome the alteration in hexose uptake when larger concentrations of sugars (greater than 5 mM) were used. There was no detectable change in total protein synthesis during incubation of fat cells with dexamethasone. However, actinomycin C blocked the inhibitory effect of dexamethasone on glucose uptake. Cycloheximide, which caused a small inhibition in glucose uptake, prevented the full expression of the inhibitory effect of dexamethasone on glucose transport. These results indicate that dexamethasone alters the facilitated transport of glucose and, secondly, suggest that synthesis of RNA and protein is needed for glucocorticoid action.  相似文献   

5.
Incubation of fat cells with insulin increased glycogen synthase I activity without changing total synthase activity. This effect of insulin was dependent upon the particular lot of albumin present in the medium and was abolished by incubating cells with trypsin. Half-maximal activation of glycogen synthase was obtained with 8 microunits/ml of insulin, a concentration very similar to that which half-maximally stimulated 3-O-methylglucose uptake. The basal percentage of phosphorylase a activity was not detectably altered by insulin, although it was decreased by incubating cells with 5 mM glucose. Insulin (50 microunits/ml) markedly opposed actions of epinephrine (0.05 to 10 muM) to increase phosphorylase a activity and decrease glycogen synthase I activity, effects which were observed without glucose. Partial activation of glycogen synthase by insulin was seen after 1 min and complete activation after 4 min. Glucose alone produced a transient increase in synthase I activity. When cells were incubated with insulin plus glucose for 4 min, the increase in the percent synthase I activity was much greater than the additive effects of insulin and glucose alone. This potentiation of the effect of insulin on glucogen synthase I activity depended on the time of incubation with glucose and on the concentration of the hexose. If cells were incubated with cytochalasin B before insulin plus glucose, the effect of glucose was abolished. These results suggest that there are at least two mechanisms by which insulin can increase fat cell glycogen synthase I activity. One requires glucose and activation occurs secondary to an increase in glucose transport; where another mechanism(s) is operative even in the absence of glucose.  相似文献   

6.
Brewer's yeast preparations influence glucose metabolism in vivo and in isolated tissues. We have studied the effect of a brewer's yeast extract on glucose metabolism and grwoth of rat hepatoma and human embryonic cells. Growth of the rat hepatoma cells was very much stimulated by the extract in a concentration-dependent manner. Glucose uptake was, on the other hand, appreciably inhibited, and lactate uptake completely abolished by the extract. Insulin stimulated cell growth and inhibited lactate uptake but did not affect the glucose level. Insulin and the extract had additive effects on growth and lactate uptake of the hepatoma cells. The inhibition by the brewer's yeast extract of glucose uptake was, however, antagonized by insulin. Niacin or Cr3+, which are suggested to be components of a “glucose tolerance factor” of brewer's yeast, did not affect growth or glucose and lactate uptake. The glucose uptake of the human embryonic cells was strongly inhibited by the brewer's yeast extract. Cell growth and lactate production were not influenced by the extract or by insulin; however, when both insulin and extract were present simultaneously, a slight stimulation of growth and inhibition of lactate production was observed. The results indicate that brewer's yeast can have appreciable direct effects on cells and that not all of these effects are “insulin-like”.  相似文献   

7.
Insulin is thought to exert its effects on cellular function through the phosphorylation or dephosphorylation of specific regulatory substrates. We have analyzed the effects of okadaic acid, a potent inhibitor of type 1 and 2A protein phosphatases, on the ability of insulin to stimulate glucose transport in rat adipocytes. Insulin and okadaic acid caused a 20-25- and a 3-6-fold increase, respectively, in the rate of 2-deoxyglucose accumulation by adipose cells. When added to cells previously treated with okadaic acid, insulin failed to stimulate 2-deoxyglucose accumulation beyond the levels observed with okadaic acid alone. Treatment of cells with okadaic acid did not inhibit the effect of insulin to stimulate tyrosine autophosphorylation of its receptor. These results indicate that okadaic acid potently inhibits the effects of insulin to stimulate glucose uptake and/or utilization at a step after receptor activation. To clarify the mechanism of inhibition by okadaic acid, the intrinsic activity of the plasma membrane glucose transporters was analyzed by measuring the rate of uptake of 3-O-methylglucose by adipose cells, and the concentration of adipocyte/skeletal muscle isoform of the glucose transporter (GLUT-4) in plasma membranes isolated from these cells. Insulin caused a 15-20-fold stimulation of 3-O-methylglucose uptake and a 2-3-fold increase in the levels of GLUT-4 detected by immunoblotting of isolated plasma membranes; okadaic acid caused a 2-fold increase in 3-O-methylglucose uptake, and a 1.5-fold increase in plasma membrane GLUT-4. Pretreatment of cells with okadaic acid blocked the effect of insulin to stimulate 3-O-methylglucose uptake and to increase the plasma membrane concentration of GLUT-4 beyond the levels observed with okadaic acid alone. These results indicate that the effect of okadaic acid to inhibit the effect of insulin on glucose uptake is exerted at a step prior to the recruitment of glucose transporters to the cell surface, and suggest that a phosphatase activity may be critical for this process.  相似文献   

8.
《Chronobiology international》2013,30(4-5):521-538
Hypertension and noninsulin-dependent diabetes mellitus are usually associated with marked glucose intolerance. Hypertensive and even nonhypertensive diabetic individuals display disturbances of the normal circadian blood pressure rhythm. However, little is known about circadian changes of the glucose uptake in muscle and fat cells, the major glucose utilizing tissues. Therefore, we investigated circadian rhythms of glucose uptake in primary muscle and fat cell cultures of hypertensive and type II diabetic rats and their respective control strains. 2-Deoxy-d-(1-3H)glucose uptake was measured over 48 h after synchronization of cells by means of medium change with and without addition of insulin, phloretine, and/or staurosporine. The circadian changes of glucose uptake were assessed by fitting cosine curves to the uptake values. Insulin stimulation of deoxyglucose uptake was only present in control animals, not in hypertensive and diabetic rats. Deoxyglucose uptake displayed a circadian rhythm in control animals, and was markedly disturbed in hypertensive and diabetic animals. Blocking of glucose transporters by phloretine abolished the circadian pattern of deoxyglucose uptake indicating a role of glucose transporters in its generation. Inhibition of kinases by staurosporine inhibited the insulin-stimulated deoxyglucose uptake, but did not dampen the circadian rhythmicity of basal deoxyglucose uptake. The generation of the circadian rhythm of glucose uptake in muscle and fat cell cultures is therefore probably insulin independent and independent of protein kinases. In summary, our results show for the first time: (a) a circadian rhythm of deoxyglucose uptake in glucose utilizing muscle and fat cells in vitro, (b) a disruption of this rhythm in cells of hypertensive and diabetic rats.  相似文献   

9.
N6-Phenylisopropyladenosine was employed in the absence of endogenous adenosine to explore the influence exerted by the R-site over the antagonistic interaction of insulin and catecholamines on several parameters of fat cell metabolism. When no hormones were present, N6-phenylisopropyladenosine had little or no effect; however, the nucleoside potentiated insulin inhibition of catecholamine-stimulated events, such as lipolysis, and, conversely, diminished or blocked catecholamine inhibition of insulin-stimulated processes, such as 2-deoxyglucose uptake, glucose oxidation and esterification, even under conditions where N6-phenylisopropyladenosine, alone, was ineffective in reversing catecholamine actions.  相似文献   

10.
《PLoS biology》2013,11(2)
When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.  相似文献   

11.
Mor A  Aizman E  George J  Kloog Y 《PloS one》2011,6(6):e21712

Background

Reduced glucose uptake due to insulin resistance is a pivotal mechanism in the pathogenesis of type 2 diabetes. It is also associated with increased inflammation. Ras inhibition downregulates inflammation in various experimental models. The aim of this study was to examine the effect of Ras inhibition on insulin sensitivity and glucose uptake, as well as its influence on type 2 diabetes development.

Methods and Findings

The effect of Ras inhibition on glucose uptake was examined both in vitro and in vivo. Ras was inhibited in cells transfected with a dominant-negative form of Ras or by 5-fluoro-farnesylthiosalicylic acid (F-FTS), a small-molecule Ras inhibitor. The involvement of IκB and NF-κB in Ras-inhibited glucose uptake was investigated by immunoblotting. High fat (HF)-induced diabetic mice were treated with F-FTS to test the effect of Ras inhibition on induction of hyperglycemia. Each of the Ras-inhibitory modes resulted in increased glucose uptake, whether in insulin-resistant C2C12 myotubes in vitro or in HF-induced diabetic mice in vivo. Ras inhibition also caused increased IκB expression accompanied by decreased expression of NF-κB . In fat-induced diabetic mice treated daily with F-FTS, both the incidence of hyperglycemia and the levels of serum insulin were significantly decreased.

Conclusions

Inhibition of Ras apparently induces a state of heightened insulin sensitization both in vitro and in vivo. Ras inhibition should therefore be considered as an approach worth testing for the treatment of type 2 diabetes.  相似文献   

12.
Increasing body weight appears to alter lipid metabolism in adipose tissue. We have measured the content of lipoprotein lipase and the uptake of chylomicron triglyceride fatty acids in epididymal fat pads of rats of different weights. In order that the results might be expressed in terms of cell numbers, the relationship between the weights of fat pads and the numbers and volumes of fat cells isolated from them was determined. Highly significant correlations were found between fat pad weight and both the number and the volume of the individual adipocytes. In rats weighing from 140 to 350 g, the increase in the size of fat pads was attributable almost equally to increases in cell size and in cell number. Lipoprotein lipase activity was measured in acetone powders of whole fat pads and of isolated fat cell preparations. With both, lipoprotein lipase activity per cell diminished significantly as the weight of fat tissue increased, i.e., larger fat cells contained less enzyme per cell than smaller cells. The uptake of triglyceride fatty acid radioactivity was measured after incubation of fat pads with radiolabeled rat lymph chylomicrons in flasks containing either buffer alone or with added glucose or glucose plus insulin. The addition of glucose and insulin led to a mean increase of 70% in the uptake of radioactivity, but larger adipocytes were stimulated less than smaller cells. This resulted in a significant negative correlation between the weights of fat pads and the uptake of radioactivity. Enlargement of fat cells also led to a diminution in their capacity to esterify fatty acids.  相似文献   

13.
Glycolysis in bloodstream T. brucei is the sole source of energy and remains a favourable chemotherapeutic target. In furtherance of this, an attempt has been made to understand better the contribution of glucose, fructose, mannose and glycerol to the energy charge of these parasites incubated in the presence of oligomycin, salicyhydroxamic acid (SHAM) and digitonin. Their cellular energy charge, when catabolizing glucose was 0.860, and under inhibition by oligomycin (10 microg), SHAM (2 mM) or oligomycin plus SHAM, 0.800, 0.444 and 0.405, respectively. Oligomycin inhibited the rate of catabolism of glucose, mannose and fructose up to 80%. The inhibition could not be alleviated by uncouplers, such as 2,4-dinitrophenol or permeabilization of the membranes by digitonin. Glucose-6-phosphate and other phosphorylated glycolytic intermediates, such as fructose-6-phosphate were catabolized by the permeabilized parasites in the presence of oligomycin, implying that except hexokinase, all the other glycolytic enzymes were active. Glucose oxidation was stimulated by low concentrations of digitonin (up to 4 microg), but at higher concentrations, it was significantly inhibited (up to 90% inhibition at 10 microg). Apparently, the inhibitory effects of oligomycin and digitonin were confined to glucose uptake and hexokinase catalysis. The above observations suggest that the hexose transporter and the enzyme hexokinase might be functionally-linked in the glycosomal membrane and oligomycin inhibits the linkage, by using a mechanism not linked to the energy charge of the cell. Digitonin at concentrations higher than 4 microg disrupted the membrane, rendering the complex in-operative. A hexokinase/hexose transporter complex in the glycosomal membrane is envisaged.  相似文献   

14.
Thiazolidinediones (TZDs), agonists for PPARs, have been shown to block the inhibitory effects of TNF-alpha on insulin action using cultured cells. In order to clarify the in vivo effects of TZDs on the inhibition of insulin sensitivity by TNF-alpha, insulin action in muscles and adipose tissues was assessed in the TNF-alpha-overexpression mice model using transplantation of cells secreting the TNF-alpha protein. After the pioglitazone treatment for 4 weeks, glucose uptake, insulin-induced IRS-1 phosphorylation, and lipoprotein lipase mRNA levels were analyzed. Pioglitazone did not ameliorate TNF-alpha-induced hyperinsulinemia in this model, as assessed by the OGTT. Glucose uptake and lipoprotein lipase mRNA levels were decreased by TNF-alpha in adipose tissues from the TNF-alpha-overexpressing mice, and pioglitazone blocked these inhibitions by TNF-alpha. On the other hand, in muscles, pioglitazone did not reverse the effects of TNF-alpha on insulin-induced phosphorylation of IRS-1, glucose uptake, and lipoprotein lipase mRNA levels. Present study revealed the different sensitivities of pioglitazone for the recovery of decreased insulin action in a TNF-alpha-overexpressing model using cell transplantation. These results suggest that the effect of TZDs is dependent on the fat distribution and accumulation in humans.  相似文献   

15.
Hypertension and noninsulin-dependent diabetes mellitus are usually associated with marked glucose intolerance. Hypertensive and even nonhypertensive diabetic individuals display disturbances of the normal circadian blood pressure rhythm. However, little is known about circadian changes of the glucose uptake in muscle and fat cells, the major glucose utilizing tissues. Therefore, we investigated circadian rhythms of glucose uptake in primary muscle and fat cell cultures of hypertensive and type II diabetic rats and their respective control strains. 2-Deoxy-D-(1-3H)glucose uptake was measured over 48 h after synchronization of cells by means of medium change with and without addition of insulin, phloretine, and/or staurosporine. The circadian changes of glucose uptake were assessed by fitting cosine curves to the uptake values. Insulin stimulation of deoxyglucose uptake was only present in control animals, not in hypertensive and diabetic rats. Deoxyglucose uptake displayed a circadian rhythm in control animals, and was markedly disturbed in hypertensive and diabetic animals. Blocking of glucose transporters by phloretine abolished the circadian pattern of deoxyglucose uptake indicating a role of glucose transporters in its generation. Inhibition of kinases by staurosporine inhibited the insulin-stimulated deoxyglucose uptake, but did not dampen the circadian rhythmicity of basal deoxyglucose uptake. The generation of the circadian rhythm of glucose uptake in muscle and fat cell cultures is therefore probably insulin independent and independent of protein kinases. In summary, our results show for the first time: (a) a circadian rhythm of deoxyglucose uptake in glucose utilizing muscle and fat cells in vitro, (b) a disruption of this rhythm in cells of hypertensive and diabetic rats.  相似文献   

16.
Colchicine inhibits glucose oxidation and the uptake of 2-deoxy-D-glucose in fat cell ghosts but has no effect on glucose oxidation by fat cell homogenates. This inhibition is rapid, reversible, and temperature-independent. Insulin-stimulated glucose oxidation and 2-deoxy-D-glucose transport are also inhibited by colchicine to an extent comparable to the basal processes.  相似文献   

17.
Addition of 5 μg/ml concanavalin A to isolated white fat cells in the presence of 1 % albumin maximally stimulated the conversion of d-[1-14C]glucose to CO2, glyceride-glycerol and fatty acids over a 1 h incubation period; as little as 1 μg/ml agglutinin increased fat cell glucose oxidation more than 2-fold. Labelled CO2 production in the presence of concanavalin A was linear for at least 90 min and was inhibited by 40 mM α-methyl-d-glucoside which had little effect on basal or insulin-stimulated glucose oxidation. The effect of a submaximal concentration of the agglutinin was additive to that of submaximal but not maximal concentrations of insulin.Concanavalin A caused agglutination of fat cells which could be readily detected by light microscopy. Digestion of fat cells with 0.5 mg/ml trypsin for 15 min did not affect subsequent agglutination and inhibited the increased glucose oxidation due to concanavalin A by less than 30%. Thus the action of concanavalin A was much less sensitive to trypsinization of fat cells than insulin since trypsin under the above conditions completely abolished the effect of insulin. An anti-blood group A agglutinin from Phaseolus lunatus and Lens culanaris agglutinin also markedly stimulatedfat cell glucose conversion to CO2. Agglutinin-stimulated glucose metabolism was inhibited by phloretin. This binding of several types of specific plant lectins to fat cell membrane glycoprotein(s) and/or glycolipid(s) apparently initiates events which results in increased glucose transport.  相似文献   

18.
19.
Dual effect of insulin on in vitro leptin secretion by adipose tissue   总被引:2,自引:0,他引:2  
Although it is widely accepted that insulin stimulates leptin secretion, a dual action was observed using a validated in vitro system, i.e., an early (less than 48 h) inhibitory action, followed later (48-96 h) by a clear-cut stimulation. While the inhibitory phase was observed at every glucose concentration tested (from 1 to 25 mM), the stimulatory phase required the presence of physiological or supraphysiological glucose concentrations. In fact, leptin secretion was virtually eliminated in the presence of glucose uptake inhibitors. This dual effect of insulin was not due to modifications of the ob mRNA levels, suggesting that it depends entirely on posttranslational mechanisms. In conclusion, insulin appears to induce an early inhibition of leptin secretion by the adipose cell, followed later by a stimulatory effect secondary to the metabolic changes triggered by the insulin-induced increase in glucose uptake.  相似文献   

20.
Summary Recent technical advances have yielded considerable new biochemical insights into the hexose transport systems of both brown and white fat cells. In the present studies a novel filtration method was used to monitor initial rates of 3-O-(3H) methylglucose uptake in isolated white fat cells. Transport of 3-O-methylglucose, a non-metabolizable analogue of glucose, occurred by facilitated diffusion, was inhibited by glucose, phloridzin, cytochalasin B and dipyridamole, and was rapidly stimulated by insulin as well as lectins. Total 3-O-methylglucose uptake in white fat cells could be attributed to two kinetically distinct processes in addition to a certain degree of diffusion.Two important new features of glucose transport in fat cells have been discovered. First, in both brown and white fat cells transport per se does not appear to be necessarily rate-limiting for further glucose metabolism. Thus vitamin K5, which markedly increases glucose oxidation by brown fat cells, did not affect the glucose transport system activity. Glucose utilization can apparently be significantly enhanced in fat cells by agents which either increase transport system activity or intracellular enzyme activity. Second, the transport system itself, whether in the basal state or after activation by insulin, lectins, or oxidants, is resistant to sulfhydryl reagents such as N-ethylmaleimide, while the increase in transport activity due to these agents is exquisitely sensitive to sulfhydryl blockage. N-ethylmaleimide blocks the stimulatory effect of insulin on transport whereas addition of insulin to fat cells prior to the reagent completely protects against this inhibitory effect. Further, N-ethylmaleimide prevents the elevated rates of transport system activity due to insulin (or other agents) from returning to basal levels once the cells are washed free of hormone. These data are consistent with the concept that activation of the transport system involves oxidation of key membrane sulfhydryls to the disulfide form, but alternative models are also possible. In any case, these findings provide a possible biochemical clue for future studies designed to identify the specific component(s) involved in the regulatory mechanism which modulates transport of glucose in isolated fat cells.Invited ArticleRecipient of the Elliot P. Joslin Research and Development Award of the American Diabetes Association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号