首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BMP2 is required for early heart development during a distinct time period   总被引:16,自引:0,他引:16  
BMP2, like its Drosophila homologue dpp, is an important signaling molecule for specification of cardiogenic mesoderm in vertebrates. Here, we analyzed the time-course of BMP2-requirement for early heart formation in whole chick embryos and in explants of antero-lateral plate mesoderm. Addition of Noggin to explants isolated at stage 4 and cultured for 24 h resulted in loss of NKX2.5, GATA4, eHAND, Mef2A and vMHC expression. At stages 5-8 the individual genes showed differential sensitivity to Noggin addition. While expression of eHAND, NKX2.5 and Mef2A was clearly reduced by Noggin vMHC was only marginally affected. In contrast, GATA4 expression was enhanced after Noggin treatment. The developmental period during which cardiac mesoderm required the presence of BMP signaling in vivo was assessed by implantation of Noggin expressing cells into stage 4-8 embryos which were then cultured until stage 10-11. Complete loss of NKX2.5 and eHAND expression was observed in embryos implanted at stages 4-6, and expression was still suppressed in stages 7 and 8 implanted embryos. GATA4 expression was also blocked by Noggin at stage 4, however increased at stages 5, 6 and 7. Explants of central mesendoderm, that normally do not form heart tissue were employed to study the time-course of BMP2-induced cardiac gene expression. The induction of cardiac lineage markers in central mesendoderm of stage 5 embryos was distinct for different genes. While GATA4, -5, -6 and MEF2A were induced to maximal levels within 6 h after BMP2 addition, eHAND and dHAND required 12 h to reach maximum levels of expression. NKX2.5 was induced by 6 h and accumulated over 48 h. vMHC and titin were induced at significant levels only after 48 h of BMP2 addition. These results indicate that cardiac marker genes display distinct expression kinetics after BMP2 addition and differential response to Noggin treatment suggesting complex regulation of myocardial gene expression in the early tubular heart.  相似文献   

4.
5.
6.
Primordial germ cells (PGCs) in mice have been recognized histologically as alkaline phosphatase (AP) activity-positive cells at 7.2 days post coitum (dpc) in the extra-embryonic mesoderm. However, mechanisms regulating PGC formation are unknown, and an appropriate in vitro system to study the mechanisms has not been established. Therefore, we have developed a primary culture of explanted embryos at pre- and early-streak stages, and have studied roles of cell and/or tissue interactions in PGC formation. The emergence of PGCs from 5.5 dpc epiblasts was observed only when they were co-cultured with extra-embryonic ectoderm, which may induce the conditions required for PGC formation within epiblasts. From 6.0 dpc onwards, PGCs emerged from whole epiblasts as did a fragment of proximal epiblast that corresponds to the area containing presumptive PGC precursors without neighboring extra-embryonic ectoderm and visceral endoderm. Dissociated epiblasts at these stages, however, did not give rise to PGCs, indicating that interactions among a cluster of a specific number of proximal epiblast cells is needed for PGC differentiation. In contrast, we observed that dissociated epiblast cells from a 6.5-b (6.5+15-16 hours) to 6.75 dpc embryo that had undergone gastrulation gave rise to PGCs. Our results demonstrate that stage-dependent tissue and cell interactions play key roles in PGC determination.  相似文献   

7.
GATA-6 is expressed in presumptive cardiac mesoderm before gastrulation, but its role in heart development has been unclear. Here we show that Xenopus and zebrafish embryos, injected with antisense morpholino oligonucleotides designed specifically to knock-down translation of GATA-6 protein, are severely compromised for heart development. Injected embryos express greatly reduced levels of contractile machinery genes and, at the same stage, of regulatory genes such as bone morphogenetic protein-4 (BMP-4) and the Nkx2 family. In contrast, initial BMP and Nkx2 expression is normal, suggesting a maintenance role for GATA-6. Endoderm is critical for heart formation in several vertebrates including Xenopus, and separate perturbation of GATA-6 expression in the deep anterior endoderm and in the overlying heart mesoderm shows that GATA-6 is required in both for cardiogenesis. The GATA-6 requirement in cardiac mesoderm was confirmed in zebrafish, an organism in which endoderm is thought not to be necessary for heart formation. We therefore conclude that proper maturation of cardiac mesoderm requires GATA-6, which functions to maintain BMP-4 and Nkx2 expression.  相似文献   

8.
9.
Anterior-posterior axis specification in the mouse requires signalling from a specialised extra-embryonic tissue called the anterior visceral endoderm (AVE). AVE precursors are induced at the distal tip of the embryo and move to the prospective anterior. Embryological and genetic analysis has demonstrated that the AVE is required for anterior patterning and for correctly positioning the site of primitive streak formation by inhibiting Nodal activity. We have carried out a genetic ablation of the Hex-expressing cells of the AVE (Hex-AVE) by knocking the Diphtheria toxin subunit A into the Hex locus in an inducible manner. Using this model we have identified that, in addition to its requirement in the anterior of the embryo, the Hex-AVE sub-population has a novel role between 5.5 and 6.5dpc in patterning the primitive streak. Embryos lacking the Hex-AVE display delayed initiation of primitive streak formation and miss-patterning of the anterior primitive streak. We demonstrate that in the absence of the Hex-AVE the restriction of Bmp2 expression to the proximal visceral endoderm is also defective and expression of Wnt3 and Nodal is not correctly restricted to the posterior epiblast. These results, coupled with the observation that reducing Nodal signalling in Hex-AVE ablated embryos increases the frequency of phenotypes observed, suggests that these primitive streak patterning defects are due to defective Nodal signalling. Together, our experiments demonstrate that the AVE is not only required for anterior patterning, but also that specific sub-populations of this tissue are required to pattern the posterior of the embryo.  相似文献   

10.
11.
The anterior visceral endoderm (AVE) has attracted recent attention as a critical player in mouse forebrain development and has been proposed to act as "head organizer" in mammals. However, the precise role of the AVE in induction and patterning of the anterior neuroectoderm is not yet known. Here we identified a 5'-flanking region of the mouse Otx2 gene (VEcis) that governs the transgene expression in the visceral endoderm. In transgenic embryos, VEcis-active cells were found in the distal visceral endoderm at 5.5 days postcoitus (dpc), had begun to move anteriorly at 5.75 dpc, and then became restricted to the AVE prior to gastrulation. The VEcis-active visceral endoderm cells exhibited ectodermal morphology distinct from that of the other endoderm cells and consisted of two cell layers at 5.75 dpc. In the Otx2(-/-) background, the VEcis-active endoderm cells remained distal even at 6.5 dpc when a primitive streak was formed; anterior definitive endoderm was not formed nor were any markers of anterior neuroectoderm ever induced. The Otx2 cDNA transgene under the control of the VEcis restored these Otx2(-/-) defects, demonstrating that Otx2 is essential to the anterior movement of distal visceral endoderm cells. In germ-layer explant assays between ectoderm and visceral endoderm, the AVE did not induce anterior neuroectoderm markers, but instead suppressed posterior markers in the ectoderm; Otx2(-/-) visceral endoderm lacked this activity. Thus Otx2 is also essential for the AVE to repress the posterior character. These results suggest that distal visceral endoderm cells move to the future anterior side to generate a prospective forebrain territory indirectly, by preventing posteriorizing signals.  相似文献   

12.
The prevalent model for the generation of axial polarity in mouse embryos proposes that a radial to a linear transition in the expression of primitive streak markers precedes the formation of the primitive streak on one side of the epiblast. This model contrasts with the models of mesoderm formation in other vertebrates as it suggests that the primitive streak is initially established in a radial pattern rather than a localized region of the epiblast. Here, we examine the proposed correlation between the expression of Brachyury and Wnt3, two genes reported as expressed radially in the proximal epiblast, with the movements of proximal anterior epiblast cells at stages leading to the formation of the primitive streak. Our results reveal that neither Brachyury nor Wnt3 forms a ring of expression in the proximal epiblast as previously thought. In embryos dissected between 5.5 and 6.5 dpc, Brachyury is first expressed in the distal extra-embryonic ectoderm and subsequently on one side of the epiblast. Wnt3 expression is evident first in the posterior visceral endoderm of 5.5 dpc embryos and later in the posterior epiblast. Lineage analysis shows that the movements of the proximal epiblast do not restrict Brachyury expression to the posterior epiblast. Our data suggest a model whereby the localized expression of these genes in the posterior epiblast, and hence the formation of the primitive streak, is the result of local cell-cell interactions in the future posterior portion of the egg cylinder rather than regionalization of a radial pattern of expression in proximal epiblast cells.  相似文献   

13.
The Smad proteins are important intracellular mediators of the transforming growth factor beta (TGFbeta) family of secreted growth factors. Smad1 is an effector of signals provided by the bone morphogenetic protein (BMP) sub-group of TGFbeta molecules. To understand the role of Smad1 in mouse development, we have generated a Smad1 loss-of-function allele using homologous recombination in ES cells. Smad1-/- embryos die by 10.5 dpc because they fail to connect to the placenta. Mutant embryos are first recognizable by 7.0 dpc, owing to a characteristic localized outpocketing of the visceral endoderm at the posterior embryonic/extra-embryonic junction, accompanied by a dramatic twisting of the epiblast and nascent mesoderm. Chimera analysis reveals that these two defects are attributable to a requirement for Smad1 in the extra-embryonic tissues. By 7.5 dpc, Smad1-deficient embryos show a marked impairment in allantois formation. By contrast, the chorion overproliferates, is erratically folded within the extra-embryonic space and is impeded in proximal migration. BMP signals are known to be essential for the specification and proliferation of primordial germ cells. We find a drastic reduction of primordial germ cells in Smad1-deficient embryos, suggesting an essential role for Smad1-dependent signals in primordial germ cell specification. Surprisingly, despite the key involvement of BMP signaling in tissues of the embryo proper, Smad1-deficient embryos develop remarkably normally. An examination of the expression domains of Smad1, Smad5 and Smad8 in early mouse embryos show that, while Smad1 is uniquely expressed in the visceral endoderm at 6.5 dpc, in other tissues Smad1 is co-expressed with Smad5 and/or Smad8. Collectively, these data have uncovered a unique function for Smad1 signaling in coordinating the growth of extra-embryonic structures necessary to support development within the uterine environment.  相似文献   

14.
The vertebrate liver and heart arise from adjacent cell layers in the anterior lateral (AL) endoderm and mesoderm of late gastrula embryos, and the earliest stages of liver and heart development are interrelated through reciprocal tissue interactions. Although classical embryological studies performed several decades ago in chick and quail defined the timing of hepatogenic induction in birds and the important role for cardiogenic mesoderm in this process, almost nothing is known about the molecular aspects of avian liver development. Here we use in vivo and explantation assays to investigate tissue interactions and signaling pathways regulating Hex, a homeobox gene required for liver development, and the earliest stages of hepatogenesis in the chick embryo. We find that explants of late gastrula anterior lateral endoderm plus mesoderm, which have been used extensively for studies relating to heart development, also produce albumin-expressing hepatoblasts. Expression of Hex, the earliest known molecular marker for the hepatogenic endoderm, and albumin, indicative of early committed hepatoblasts, requires both autocrine Bmp signaling and a specific paracrine signal from the cardiogenic (anterior lateral) mesoderm. Endodermal expression of Fox2a, in contrast, requires the mesoderm but is independent of Bmp signaling. In vivo induction assays show that the ability of BMP2 to activate Hex expression in the endoderm is restricted to a region that is only slightly larger than the endogenous domain of Hex expression. Although Fgfs can substitute for the cardiogenic mesoderm to support the expression of Hex and albumin in the endoderm, several Fgf genes are expressed in the anterior lateral endoderm but an Fgf expressed predominantly in the mesoderm was not identified. Studies also showed that Fgf gene expression in the endoderm does not require a signal from the mesoderm. Mechanisms regulating endodermal signaling pathways activated by Fgfs may therefore be more complex than previously appreciated.  相似文献   

15.
It is known from work with amniote embryos that regional specification of the gut requires cell-cell signalling between the mesoderm and the endoderm. In recent years, much of the interest in Xenopus endoderm development has focused on events that occur before gastrulation and this work has led to a different model whereby regional specification of the endoderm is autonomous. In this paper, we examine the specification and differentiation of the endoderm in Xenopus using neurula and tail-bud-stage embryos and we show that the current hypothesis of stable autonomous regional specification is not correct. When the endoderm is isolated alone from neurula and tail bud stages, it remains fully viable but will not express markers of regional specification or differentiation. If mesoderm is present, regional markers are expressed. If recombinations are made between mesoderm and endoderm, then the endodermal markers expressed have the regional character of the mesoderm. Previous results with vegetal explants had shown that endodermal differentiation occurs cell-autonomously, in the absence of mesoderm. We have repeated these experiments and have found that the explants do in fact show some expression of mesoderm markers associated with lateral plate derivatives. We believe that the formation of mesoderm cells by the vegetal explants accounts for the apparent autonomous development of the endoderm. Since the fate map of the Xenopus gut shows that the mesoderm and endoderm of each level do not come together until tail bud stages, we conclude that stable regional specification of the endoderm must occur quite late, and as a result of inductive signals from the mesoderm.  相似文献   

16.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.  相似文献   

17.
The heart is the first organ to function during vertebrate development and cardiac progenitors, are among the first cell lineages to be established from mesoderm cells emerging from the primitive streak during gastrulation. Cardiac progenitors have been mapped in the epiblast of pre-streak embryos. In the early chick gastrula they are located in the mid-primitive streak, from which they enter the mesoderm bilaterally. However, migration routes of cardiac progenitors have never been directly observed within the embryo and the factor(s) controlling their movement are not known. Furthermore, it is not understood how signals controlling cell movement are integrated with those that determine cell fate. Long-term video microscopy combined with GFP labelling and image processing enabled us to observe the movement patterns of prospective cardiac cells in whole embryos in real time. Embryo manipulations and the analysis of explants suggest that Wnt3a plays a crucial role in guiding these cells through a RhoA dependent mechanism involving negative chemotaxis. Wnt3a is expressed at high levels in the amniote primitive streak and ectopic signalling activity caused wider movement trajectories resulting in cardia bifida, which was rescued by dominant-negative Wnt3a. Our studies revealed Wnt3a-RhoA mediated chemo-repulsion as a novel mechanism guiding cardiac progenitors. This activity can act at long-range and does not interfere with cardiac cell fate specification.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号