首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary Rumex acetosa (sorrel) is a dioecious plant with a XX/XY1Y2 sex chromosome system. Both the Y chromosomes are nearly entirely heterochromatic and it has been hypothesised that they can persist as chromocenters in male interphase nuclei. Using specific antibodies against 5-methylcytosine and histone H4 acetylated at terminal lysine 5, global levels of DNA methylation and histone acetylation were studied on the sex chromosomes and autosomes of both sexes. The heterochromatic Y chromosomes did not display a higher methylation level compared to the autosomes. The only prominent hypermethylation signals were found at two nucleolar organising regions located on the autosome pair V, as confirmed by in situ hybridisation with 25S rDNA probe and staining. Immunoanalysis of DNA methylation on female and male interphase nuclei neither revealed any sex-specific differences. Two active (silverpositive) nucleoli and two likely inactive nucleolar organising regions (displaying prominent methylation signals) were found in both sexes. In a fraction of nuclei isolated from leaf cells, two peripheral bodies strongly positive for 4,6-diamidino-2-phenylindole were observed only in males, never in females. These heterochromatin regions were depleted in histone H4 acetylation at terminal lysine 5 and corresponded, according to in situ hybridisation with a Y-chromosome-specific repetitive probe, to the two Y chromosomes. We conclude that the peripheral condensed bodies observed exclusively in male nuclei represent the constitutive heterochromatin of the Y chromosomes which is characterised by a substantial histone H4 underacetylation.  相似文献   

4.
脊椎动物性别决定模式一直是进化生物学领域的热点问题,它对个体发育和自然种群性比组成都具有深刻的影响。性别决定模式根据主要成因可分为基因依赖型性别决定(GSD)和环境依赖型性别决定(ESD)2大类,其中温度依赖型性别决定(TSD)又是ESD中的主要性别决定模式。多数羊膜类脊椎动物具有稳定的GSD模式,而爬行动物的性别决定模式则丰富多样,即使是亲缘关系很近的物种也具有不同的模式。研究者们以爬行动物为模型动物开展了许多关于脊椎动物性别决定方面的工作。本文综述了近年来爬行动物TSD的最新研究进展,回顾了温度和性激素对TSD爬行类动物的影响及其进化适应意义,以及气候变化与TSD爬行类的关系,并提出了今后爬行动物TSD研究的重点。  相似文献   

5.
6.
7.
Different animal groups exhibit a surprisingly diversity of sex determination systems. Moreover, even systems that are superficially similar may utilize different underlying mechanisms. This diversity is illustrated by a comparison of sex determination in three well-studied model organisms: the fruitfly Drosophila melanogaster, the nematode Caenorhabditis elegans, and the mouse. All three animals exhibit male heterogamety, extensive sexual dimorphism and sex chromosome dosage compensation, yet the molecular and cellular processes involved are now known to be quite unrelated. The similarities must have arisen by convergent evolution. Studies of sex determination demonstrate that evolution can produce a variety of solutions to the same basic problems in development.  相似文献   

8.
Plant sex determination and sex chromosomes   总被引:15,自引:0,他引:15  
Charlesworth D 《Heredity》2002,88(2):94-101
Sex determination systems in plants have evolved many times from hermaphroditic ancestors (including monoecious plants with separate male and female flowers on the same individual), and sex chromosome systems have arisen several times in flowering plant evolution. Consistent with theoretical models for the evolutionary transition from hermaphroditism to monoecy, multiple sex determining genes are involved, including male-sterility and female-sterility factors. The requirement that recombination should be rare between these different loci is probably the chief reason for the genetic degeneration of Y chromosomes. Theories for Y chromosome degeneration are reviewed in the light of recent results from genes on plant sex chromosomes.  相似文献   

9.
10.
11.
12.
During the evolution, sex determination occurred early. Sex determining factors were progressively isolated from other genes in sexual chromosomes, or gonosomes. Among vertebrates, evolution took two opposite pathways : in mammals, the system of XX:XY sex determination, with Y chromosome, induces male differentiation. In contrast, in birds, the system ZZ:ZW, with the W chromosome, induces female differentiation. But comparative studies show that the two pathways are not so simple. In the chicken as in the lower vertebrates, estrogens play a central role in gonadal sex differentiation. Several genes, show to be critical for mammalian determination, are also expressed in the chicken but their expression pattern differs, indicating functional plasticity. The W-linked female determinants remains still unknown. But comparative studies of the two pathways, with conserved and divergent elements, are broadening our understanding of sex determination.  相似文献   

13.
14.
15.
16.
The genetics and biology of vertebrate sex determination.   总被引:2,自引:0,他引:2  
P Koopman 《Cell》2001,105(7):843-847
  相似文献   

17.
The basic plan of gonadal development in both sexes is female unless testes are induced by factor(s) of the Y chromosome, known as testis determining factor(s) (TDF). It is not clearly established whether the Y chromosome control is autonomous or under the control of a gene on the X chromosome or autosomes. A gene for the H-Y antigen (Histocompatibility-Y antigen) has been postulated to be the factor determining testicular differentiation. Recent studies have demonstrated that the gene for testis determination and the H-Y determinant are two separate entities. Although earlier cytogenetic observations localized TDF on the pericentric region of the short arm of the Y chromosome, subsequent findings by high-resolution chromosome banding and molecular analysis localise TDF to the distal part of the short arm of the Y chromosome, adjacent to the pseudoautosomal region. A candidate for TDF, the ZFY, was localised within the 140 kb interval where the position of TDF was defined, and considered as the TDF gene. However, a smaller gene sequence of 35 kb, the SRY, situated outside the 140 kb ZFY region, has recently been isolated and proved to be the only and the smallest part of the Y chromosome necessary for male sex determination.  相似文献   

18.
Whether a germ cell embarks on oogenesis, the female gametogenic pathway, or spermatogenesis, the male pathway, may be determined cell-autonomously, by the germ cell's own genes, or by the tissue environment in which it is located. The decision may or may not be associated with the time of entry into meiosis, and this in turn may be controlled wholly by the germ cell's own genes, or in part by the environment. These issues will be explored with reference to Caenorhabditis elegans, Drosophila and the mouse.  相似文献   

19.
The two basic one locus sex determination models, diploid individual sex determination and parental sex determination, are generalized to the multilocus framework. As in the single locus case, it is established that there are two classes of polymorphic equilibria, equilibria with even sex ratio and equilibria with equal allele frequencies in the two sexes. The condition for external stability of this second class equilibria to invasion by a new mutant allele is that a new appropriately averaged sex ratio near the equilibrium be moved closer to the even sex ratio. However, stable polymorphisms with noneven sex ratio are not those that have a sex ratio as close as possible to 1/2, in contrast to the single locus case.Research supported in part by NIH grants GM 28016 and GM 10452 and a grant from the U.S.-Israel Binational Science Foundation  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号