首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cephamycin C-producing microorganisms use two enzymes to convert cephalosporins to their 7alpha-methoxy derivatives. Here we report the X-ray structure of one of these enzymes, CmcI, from Streptomyces clavuligerus. The polypeptide chain of the enzyme folds into a C-terminal Rossmann domain and a smaller N-terminal domain, and the molecule packs as a hexamer in the crystal. The Rossmann domain binds S-adenosyl-L-methionine (SAM) and the demethylated product, S-adenosyl-L-homocysteine, in a fashion similar to the common binding mode of this cofactor in SAM-dependent methyltransferases. There is a magnesium-binding site in the vicinity of the SAM site with a bound magnesium ion ligated by residues Asp160, Glu186 and Asp187. The expected cephalosporin binding site near the magnesium ion is occupied by polyethyleneglycol (PEG) from the crystallisation medium. The geometry of the SAM and the magnesium binding sites is similar to that found in cathechol O-methyltransferase. The results suggest CmcI is a methyltransferase, and its most likely function is to catalyse the transfer of a methyl group from SAM to the 7alpha-hydroxy cephalosporin in the second catalytic reaction of cephamycin formation. Based on the docking of the putative substrate, 7alpha-hydroxy-O-carbamoyldeacetylcephalosporin C, to the structure of the ternary CmcI-Mg2+-SAM complex, we propose a model for substrate binding and catalysis. In this model, the 7-hydroxy group of the beta-lactam ring ligates the Mg2+ with its alpha-side facing the methyl group of SAM at a distance that would allow methylation of the hydroxyl-group.  相似文献   

2.
A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex.  相似文献   

3.
The gene coding for d-3-hydroxybutyrate dehydrogenase (HBDH) was cloned from Pseudomonas fragi. The nucleotide sequence contained a 780 bp open reading frame encoding a 260 amino acid residue protein. The recombinant enzyme was efficiently expressed in Escherichia coli cells harboring pHBDH11 and was purified to homogeneity as judged by SDS-PAGE. The enzyme showed a strict stereospecificity to the D-enantiomer (3R-configuration) of 3-hydroxybutyrate as a substrate. Crystals of the ligand-free HBDH and of the enzyme-NAD+ complex were obtained using the hanging-drop, vapor-diffusion method. The crystal structure of the HBDH was solved by the multiwavelength anomalous diffraction method using the SeMet-substituted enzyme and was refined to 2.0 A resolution. The overall structure of P.fragi HBDH, including the catalytic tetrad of Asn114, Ser142, Tyr155, and Lys159, shows obvious relationships with other members of the short-chain dehydrogenase/reductase (SDR) family. A cacodylate anion was observed in both the ligand-free enzyme and the enzyme-NAD+ complex, and was located near the catalytic tetrad. It was shown that the cacodylate inhibited the NAD+-dependent D-3-hydroxybutyrate dehydrogenation competitively, with a Ki value of 5.6 mM. From the interactions between cacodylate and the enzyme, it is predicted that substrate specificity is achieved through the recognition of the 3-methyl and carboxyl groups of the substrate.  相似文献   

4.
Drosophila alcohol dehydrogenase (DADH) is an NAD+-dependent enzyme that catalyzes the oxidation of alcohols to aldehydes/ketones and that is also able to further oxidize aldehydes to their corresponding carboxylic acids. The structure of the ternary enzyme-NADH-acetate complex of the slow alleloform of Drosophila melanogaster ADH (DmADH-S) was solved at 1.6 A resolution by X-ray crystallography. The coenzyme stereochemistry of the aldehyde dismutation reaction showed that the obtained enzyme-NADH-acetate complex reflects a productive ternary complex although no enzymatic reaction occurs. The stereochemistry of the acetate binding in the bifurcated substrate-binding site, along with previous stereochemical studies of aldehyde reduction and alcohol oxidation shows that the methyl group of the aldehyde in the reduction reaction binds to the R1 and in the oxidation reaction to the R2 sub-site. NMR studies along with previous kinetic studies show that the formed acetaldehyde intermediate in the oxidation of ethanol to acetate leaves the substrate site prior to the reduced coenzyme, and then binds to the newly formed enzyme-NAD+ complex. Here, we compare the three-dimensional structure of D.melanogaster ADH-S and a previous theoretically built model, evaluate the differences with the crystal structures of five Drosophila lebanonensis ADHs in numerous complexed forms that explain the substrate specificity as well as subtle kinetic differences between these two enzymes based on their crystal structures. We also re-examine the electrostatic influence of charged residues on the surface of the protein on the catalytic efficiency of the enzyme.  相似文献   

5.
Gluconate 5‐dehydrogenase (Ga5DH) is an NADP(H)‐dependent enzyme that catalyzes a reversible oxidoreduction reaction between D ‐gluconate and 5‐keto‐D ‐gluconate, thereby regulating the flux of this important carbon and energy source in bacteria. Despite the considerable amount of physiological and biochemical knowledge of Ga5DH, there is little physical or structural information available for this enzyme. To this end, we herein report the crystal structures of Ga5DH from pathogenic Streptococcus suis serotype 2 in both substrate‐free and liganded (NADP+/D ‐gluconate/metal ion) quaternary complex forms at 2.0 Å resolution. Structural analysis reveals that Ga5DH adopts a protein fold similar to that found in members of the short chain dehydrogenase/reductase (SDR) family, while the enzyme itself represents a previously uncharacterized member of this family. In solution, Ga5DH exists as a tetramer that comprised four identical ~29 kDa subunits. The catalytic site of Ga5DH shows considerable architectural similarity to that found in other enzymes of the SDR family, but the S. suis protein contains an additional residue (Arg104) that plays an important role in the binding and orientation of substrate. The quaternary complex structure provides the first clear crystallographic evidence for the role of a catalytically important serine residue and also reveals an amino acid tetrad RSYK that differs from the SYK triad found in the majority of SDR enzymes. Detailed analysis of the crystal structures reveals important contributions of Ca2+ ions to active site formation and of specific residues at the C‐termini of subunits to tetramer assembly. Because Ga5DH is a potential target for therapy, our findings provide insight not only of catalytic mechanism, but also suggest a target of structure‐based drug design.  相似文献   

6.
L-threonine dehydrogenase (TDH) is an enzyme that catalyzes the oxidation of L-threonine to 2-amino-3-ketobutyrate. We solved the first crystal structure of a medium chain L-threonine dehydrogenase from a hyperthermophilic archaeon, Pyrococcus horikoshii (PhTDH), by the single wavelength anomalous diffraction method using a selenomethionine-substituted enzyme. This recombinant PhTDH is a homo-tetramer in solution. Three monomers of PhTDHs were located in the crystallographic asymmetric unit, however, the crystal structure exhibits a homo-tetramer structure with crystallographic and non-crystallographic 222 symmetry in the cell. Despite the low level of sequence identity to a medium-chain NAD(H)-dependent alcohol dehydrogenase (ADH) and the different substrate specificity, the overall folds of the PhTDH monomer and tetramer are similar to those of the other ADH. Each subunit is composed of two domains: a nicotinamide cofactor (NAD(H))-binding domain and a catalytic domain. The NAD(H)-binding domain contains the alpha/beta Rossmann fold motif, characteristic of the NAD(H)-binding protein. One molecule of PhTDH contains one zinc ion playing a structural role. This metal ion exhibits coordination with four cysteine ligands and some of the ligands are conserved throughout the structural zinc-containing ADHs and TDHs. However, the catalytic zinc ion that is coordinated at the bottom of the cleft in the case of ADH was not observed in the crystal of PhTDH. There is a significant difference in the orientation of the catalytic domain relative to the coenzyme-binding domain that results in a larger interdomain cleft.  相似文献   

7.
Propionate metabolism in Salmonella typhimurium occurs via 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (PrpB). Here we report the X-ray crystal structure of the native and the pyruvate/Mg(2+) bound PrpB from S. typhimurium, determined at 2.1 and 2.3A, respectively. The structure closely resembles that of the Escherichia coli enzyme. Unlike the E. coli PrpB, Mg(2+) could not be located in the native Salmonella PrpB. Only in pyruvate bound PrpB structure, Mg(2+) was found coordinated with pyruvate. Binding of pyruvate to PrpB seems to induce movement of the Mg(2+) by 2.5A from its position found in E. coli native PrpB. In both the native enzyme and pyruvate/Mg(2+) bound forms, the active site loop is completely disordered. Examination of the pocket in which pyruvate and glyoxalate bind to 2-methylisocitrate lyase and isocitrate lyase, respectively, reveals plausible rationale for different substrate specificities of these two enzymes. Structural similarities in substrate and metal atom binding site as well as presence of similar residues in the active site suggest possible similarities in the reaction mechanism.  相似文献   

8.
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion.  相似文献   

9.
3-Hydroxyisobutyrate, a central metabolite in the valine catabolic pathway, is reversibly oxidized to methylmalonate semialdehyde by a specific dehydrogenase belonging to the 3-hydroxyacid dehydrogenase family. To gain insight into the function of this enzyme at the atomic level, we have determined the first crystal structures of the 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8: holo enzyme and sulfate ion complex. The crystal structures reveal a unique tetrameric oligomerization and a bound cofactor NADP+. This bacterial enzyme may adopt a novel cofactor-dependence on NADP, whereas NAD is preferred in eukaryotic enzymes. The protomer folds into two distinct domains with open/closed interdomain conformations. The cofactor NADP+ with syn nicotinamide and the sulfate ion are bound to distinct sites located at the interdomain cleft of the protomer through an induced-fit domain closure upon cofactor binding. From the structural comparison with the crystal structure of 6-phosphogluconate dehydrogenase, another member of the 3-hydroxyacid dehydrogenase family, it is suggested that the observed sulfate ion and the substrate 3-hydroxyisobutyrate share the same binding pocket. The observed oligomeric state might be important for the catalytic function through forming the active site involving two adjacent subunits, which seems to be conserved in the 3-hydroxyacid dehydrogenases. A kinetic study confirms that this enzyme has strict substrate specificity for 3-hydroxyisobutyrate and serine, but it cannot distinguish the chirality of the substrates. Lys165 is likely the catalytic residue of the enzyme.  相似文献   

10.
We have determined the crystal structure of the PvuII endonuclease in the presence of Mg(2+). According to the structural data, divalent metal ion binding in the PvuII subunits is highly asymmetric. The PvuII-Mg(2+) complex has two distinct metal ion binding sites, one in each monomer. One site is formed by the catalytic residues Asp58 and Glu68, and has extensive similarities to a catalytically important site found in all structurally examined restriction endonucleases. The other binding site is located in the other monomer, in the immediate vicinity of the hydroxyl group of Tyr94; it has no analogy to metal ion binding sites found so far in restriction endonucleases. To assign the number of metal ions involved and to better understand the role of Mg(2+) binding to Tyr94 for the function of PvuII, we have exchanged Tyr94 by Phe and characterized the metal ion dependence of DNA cleavage of wild-type PvuII and the Y94F variant. Wild-type PvuII cleaves both strands of the DNA in a concerted reaction. Mg(2+) binding, as measured by the Mg(2+) dependence of DNA cleavage, occurs with a Hill coefficient of 4, meaning that at least two metal ions are bound to each subunit in a cooperative fashion upon formation of the active complex. Quenched-flow experiments show that DNA cleavage occurs about tenfold faster if Mg(2+) is pre-incubated with enzyme or DNA than if preformed enzyme-DNA complexes are mixed with Mg(2+). These results show that Mg(2+) cannot easily enter the active center of the preformed enzyme-DNA complex, but that for fast cleavage the metal ions must already be bound to the apoenzyme and carried with the enzyme into the enzyme-DNA complex. The Y94F variant, in contrast to wild-type PvuII, does not cleave DNA in a concerted manner and metal ion binding occurs with a Hill coefficient of 1. These results indicate that removal of the Mg(2+) binding site at Tyr94 completely disrupts the cooperativity in DNA cleavage. Moreover, in quenched-flow experiments Y94F cleaves DNA about ten times more slowly than wild-type PvuII, regardless of the order of mixing. From these results we conclude that wild-type PvuII cleaves DNA in a fast and concerted reaction, because the Mg(2+) required for catalysis are already bound at the enzyme, one of them at Tyr94. We suggest that this Mg(2+) is shifted to the active center during binding of a specific DNA substrate. These results, for the first time, shed light on the pathway by which metal ions as essential cofactors enter the catalytic center of restriction endonucleases.  相似文献   

11.
The ethanologenic bacterium Zymomonas mobilis ZM4 is of special interest because it has a high ethanol yield. This is made possible by the two alcohol dehydrogenases (ADHs) present in Z. mobilis ZM4 (zmADHs), which shift the equilibrium of the reaction toward the synthesis of ethanol. They are metal-dependent enzymes: zinc for zmADH1 and iron for zmADH2. However, zmADH2 is inactivated by oxygen, thus implicating zmADH2 as the component of the cytosolic respiratory system in Z. mobilis. Here, we show crystal structures of zmADH2 in the form of an apo-enzyme and an NAD+-cofactor complex. The overall folding of the monomeric structure is very similar to those of other functionally related ADHs with structural variations around the probable substrate and NAD+ cofactor binding region. A dimeric structure is formed by the limited interactions between the two subunits with the bound NAD+ at the cleft formed along the domain interface. The catalytic iron ion binds near to the nicotinamide ring of NAD+, which is likely to restrict and locate the ethanol to the active site together with the oxidized Cys residue and several nonpolar bulky residues. The structures of the zmADH2 from the proficient ethanologenic bacterium Z. mobilis, with and without NAD+ cofactor, and modeling ethanol in the active site imply that there is a typical metal-dependent catalytic mechanism.  相似文献   

12.
Human glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the removal of the metabolic by-product glyoxylate from within the liver. Deficiency of this enzyme is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure. Here we describe the crystal structure of human GRHPR at 2.2 A resolution. There are four copies of GRHPR in the crystallographic asymmetric unit: in each homodimer, one subunit forms a ternary (enzyme+NADPH+reduced substrate) complex, and the other a binary (enzyme+NADPH) form. The spatial arrangement of the two enzyme domains is the same in binary and ternary forms. This first crystal structure of a true ternary complex of an enzyme from this family demonstrates the relationship of substrate and catalytic residues within the active site, confirming earlier proposals of the mode of substrate binding, stereospecificity and likely catalytic mechanism for these enzymes. GRHPR has an unusual substrate specificity, preferring glyoxylate and hydroxypyruvate, but not pyruvate. A tryptophan residue (Trp141) from the neighbouring subunit of the dimer is projected into the active site region and appears to contribute to the selectivity for hydroxypyruvate. This first crystal structure of a human GRHPR enzyme also explains the deleterious effects of naturally occurring missense mutations of this enzyme that lead to PH2.  相似文献   

13.
Apurinic/apyrimidinic endonuclease 1 (APE1), a central enzyme in the base excision repair pathway, cleaves damaged DNA in Mg(2+) dependent reaction. Despite characterization of nine X-ray crystallographic structures of human APE1, in some cases, bound to various metal ions and substrate/product, the position of the metal ion and its stoichiometry for the cleavage reaction are still being debated. While a mutation of the active site E96Q was proposed to eliminate Mg(2+) binding at the "A" site, we show experimentally that this mutant still requires Mg(2+) at concentration similar to that for the wild type enzyme to cleave the AP site in DNA. Molecular dynamics simulations of the wild type APE1, E96Q and a double missense mutant E96Q + D210N indicate that Mg(2+) placed at the A-site destabilizes the bound AP site-containing DNA. In these simulations, the H-bond chain D238-H309-AP site oxygen is broken and the substrate DNA is shifted away from its crystal structure position (1DE9). In contrast, simulations with the Mg(2+) at site B or A+B sites leave the substrate DNA at the position shown in the crystal structure (1DE9). Taken together our MD simulations and biochemical analysis suggests that Mg(2+) binding at the B site is involved in the reaction mechanism associated with endonuclease function of APE1.  相似文献   

14.
(3R)-hydroxyacyl-CoA dehydrogenase is part of multifunctional enzyme type 2 (MFE-2) of peroxisomal fatty acid beta-oxidation. The MFE-2 protein from yeasts contains in the same polypeptide chain two dehydrogenases (A and B), which possess difference in substrate specificity. The crystal structure of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase AB heterodimer, consisting of dehydrogenase A and B, determined at the resolution of 2.2A, shows overall similarity with the prototypic counterpart from rat, but also important differences that explain the substrate specificity differences observed. Docking studies suggest that dehydrogenase A binds the hydrophobic fatty acyl chain of a medium-chain-length ((3R)-OH-C10) substrate as bent into the binding pocket, whereas the short-chain substrates are dislocated by two mechanisms: (i) a short-chain-length 3-hydroxyacyl group ((3R)-OH-C4) does not reach the hydrophobic contacts needed for anchoring the substrate into the active site; and (ii) Leu44 in the loop above the NAD(+) cofactor attracts short-chain-length substrates away from the active site. Dehydrogenase B, which can use a (3R)-OH-C4 substrate, has a more shallow binding pocket and the substrate is correctly placed for catalysis. Based on the current structure, and together with the structure of the 2-enoyl-CoA hydratase 2 unit of yeast MFE-2 it becomes obvious that in yeast and mammalian MFE-2s, despite basically identical functional domains, the assembly of these domains into a mature, dimeric multifunctional enzyme is very different.  相似文献   

15.
cis-Biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (BphB) is involved in the aerobic biodegradation of polychlorinated biphenyls (PCBs). The crystal structure of the NAD+-enzyme complex was determined by molecular replacement and refined to an R-value of 17.9% at 2.0 A. As a member of the short-chain alcohol dehydrogenase/reductase (SDR) family, the overall protein fold and positioning of the catalytic triad in BphB are very similar to those observed in other SDR enzymes, although small differences occur in the cofactor binding site. Modeling studies indicate that the substrate is bound in a deep hydrophobic cleft close to the nicotinamide moiety of the NAD+ cofactor. These studies further suggest that Asn143 is a key determinant of substrate specificity. A two-step reaction mechanism is proposed for cis-dihydrodiol dehydrogenases.  相似文献   

16.
The crystal structure of the enzyme 3-isopropylmalate dehydrogenase (IPMDH) from Mycobacterium tuberculosis (LeuB, Mtb-IPMDH, Rv2995c) without substrate or co-factor was determined at 1.65 A resolution, which is the highest resolution reported for an IPMDH to date. The crystals contain two functional dimers in the asymmetric unit in an arrangement close to a tetramer of D2 symmetry. Despite the absence of a substrate or inhibitor bound to the protein, the structure of the monomer resembles the previously observed closed form of the enzyme more closely than the open form. A comparison with the substrate complex of IPMDH from Thiobacillus ferrooxidans and the co-factor complex of the Thermus thermophilus enzyme revealed a close relationship of the active-site architecture between the various bacterial enzymes. The inhibitor O-isobutenyl oxalylhydroxamate was found to bind to the active site of IPMDH in a mode similar to the substrate isopropylmalate.  相似文献   

17.
The R-specific alcohol dehydrogenase (RADH) from Lactobacillus brevis is an NADP-dependent, homotetrameric member of the extended enzyme family of short-chain dehydrogenases/reductases (SDR) with a high biotechnological application potential. Its preferred in vitro substrates are prochiral ketones like acetophenone with almost invariably a small methyl group as one substituent and a bulky (often aromatic) moiety as the other. On the basis of an atomic-resolution structure of wild-type RADH in complex with NADP and acetophenone, we designed the mutant RADH-G37D, which should possess an improved cosubstrate specificity profile for biotechnological purposes, namely, a preference for NAD rather than NADP. Comparative kinetic measurements with wild-type and mutant RADH showed that this aim was achieved. To characterize the successful mutant structurally, we determined several, partly atomic-resolution, crystal structures of RADH-G37D both as an apo-enzyme and as ternary complex with NAD or NADH and phenylethanol. The increased affinity of RADH-G37D for NAD(H) depends on an interaction between the adenosine ribose moiety of NAD and the inserted aspartate side-chain. A structural comparison between RADH-G37D as apo-enzyme and as a part of a ternary complex revealed significant rearrangements of Ser141, Glu144, Tyr189 and Met205 in the vicinity of the active site. This plasticity contributes to generate a small hydrophobic pocket for the methyl group typical for RADH substrates, and a hydrophobic coat for the second, more variable and often aromatic, substituent. Around Ser141 we even found alternative conformations in the backbone. A structural adaptability in this region, which we describe here for the first time for an SDR enzyme, is probably functionally important, because it concerns Ser142, a member of the highly conserved catalytic tetrad typical for SDR enzymes. Moreover, it affects an extended proton relay system that has been identified recently as a critical element for the catalytic mechanism in SDR enzymes.  相似文献   

18.
We have determined high-resolution crystal structures of a CDK2/Cyclin A transition state complex bound to ADP, substrate peptide, and MgF(3)(-). Compared to previous structures of active CDK2, the catalytic subunit of the kinase adopts a more closed conformation around the active site and now allows observation of a second Mg(2+) ion in the active site. Coupled with a strong [Mg(2+)] effect on in vitro kinase activity, the structures suggest that the transient binding of the second Mg(2+) ion is necessary to achieve maximum rate enhancement of the chemical reaction, and Mg(2+) concentration could represent an important regulator of CDK2 activity in vivo. Molecular dynamics simulations illustrate how the simultaneous binding of substrate peptide, ATP, and two Mg(2+) ions is able to induce a more rigid and closed organization of the active site that functions to orient the phosphates, stabilize the buildup of negative charge, and shield the subsequently activated γ-phosphate from solvent.  相似文献   

19.
L-Xylulose reductase (XR), an enzyme in the uronate cycle of glucose metabolism, belongs to the short-chain dehydrogenase/reductase (SDR) superfamily. Among the SDR enzymes, XR shows the highest sequence identity (67%) with mouse lung carbonyl reductase (MLCR), but the two enzymes show different substrate specificities. The crystal structure of human XR in complex with reduced nicotinamide adenine dinucleotide phosphate (NADPH) was determined at 1.96 A resolution by using the molecular replacement method and the structure of MLCR as the search model. Features unique to human XR include electrostatic interactions between the N-terminal residues of subunits related by the P-axis, termed according to SDR convention, and an interaction between the hydroxy group of Ser185 and the pyrophosphate of NADPH. Furthermore, identification of the residues lining the active site of XR (Cys138, Val143, His146, Trp191, and Met200) together with a model structure of XR in complex with L-xylulose, revealed structural differences with other members of the SDR family, which may account for the distinct substrate specificity of XR. The residues comprising a recently proposed catalytic tetrad in the SDR enzymes are conserved in human XR (Asn107, Ser136, Tyr149, and Lys153). To examine the role of Asn107 in the catalytic mechanism of human XR, mutant forms (N107D and N107L) were prepared. The two mutations increased K(m) for the substrate (>26-fold) and K(d) for NADPH (95-fold), but only the N107L mutation significantly decreased k(cat) value. These results suggest that Asn107 plays a critical role in coenzyme binding rather than in the catalytic mechanism.  相似文献   

20.
The structure of the Mg(2+)-dependent enzyme human phosphoserine phosphatase (HPSP) was exploited to examine the structural and functional role of the divalent cation in the active site of phosphatases. Most interesting is the biochemical observation that a Ca(2+) ion inhibits the activity of HPSP, even in the presence of added Mg(2+). The sixfold coordinated Mg(2+) ion present in the active site of HPSP under normal physiological conditions, was replaced by a Ca(2+) ion by using a crystallization condition with high concentration of CaCl(2) (0.7 m). The resulting HPSP structure now shows a sevenfold coordinated Ca(2+) ion in the active site that might explain the inhibitory effect of Ca(2+) on the enzyme. Indeed, the Ca(2+) ion in the active site captures both side-chain oxygen atoms of the catalytic Asp20 as a ligand, while a Mg(2+) ion ligates only one oxygen atom of this Asp residue. The bidentate character of Asp20 towards Ca(2+) hampers the nucleophilic attack of one of the Asp20 side chain oxygen atoms on the phosphorus atom of the substrate phosphoserine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号