首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease.  相似文献   

2.
In order to obtain a novel absorbent with high adsorption capacity for the purification of immunoglobulin G (IgG), continuous supermacroporous agarose beads embedded agarose-chitosan composite monolithic cryogels (agarose-chitosan cryogels) were prepared by cryo-copolymerization of agarose-chitosan blend solutions with glutaraldehyde as the crosslinker in the presence of agarose beads. After coupling 2-mercaptopyridine onto divinylsulfone-activated matrix, the obtained cryogels were used for the purification of IgG. The microstructure morphologies of the cryogels were analyzed by scanning electron microscopy. The results showed that the obtained cryogels possess interconnected pores of 10-100 μm size. The specific surface area was 350 m(2)/g with maximum adsorption capacity of IgG 71.4 mg/g. The cryogels showed workable stability, and can be reused at least 15 times without significant loss in adsorption capacity. IgG purity after one-step purification from human plasma was monitored by electrophoresis and the average recovery was estimated to be 90%.  相似文献   

3.
Affinity chromatography was used to study an interaction of aspartic proteinases with immobilized aromatic amino acids and their derivatives. The following ligands were used: L-tyrosine, 3-iodo-L-tyrosine, 3,5-diiodo-L-tyrosine, L-phenylalanine, p-iodo-L-phenylalanine and N-acetyl-L-phenylalanine. With the exception of the last one, ligands were coupled directly to divinyl sulfone activated Sepharose 4B. For the preparation of immobilized N-acetyl-L-phenylalanine, divinyl sulfone activated Sepharose 4-B with linked ethylene diamine was used. Porcine pepsin was used for the evaluation of the capacity of the prepared affinity carriers. The capacity of the immobilized amino acid derivatives significantly increased in comparison with the non-derivatized amino acids. The prepared immobilized ligands were further used for the separation of human pepsinogens.  相似文献   

4.
Covalent immobilization of glucoamylase on the cellulose-based carrier Granocel was optimized by changing the anchor groups and the methods of activation/immobilization. Binding of the enzyme was via its primary amino groups. It was shown that using carbodiimide and divinyl sulfone for the activation of -COOH and -OH groups on the carrier resulted in the preparations with very low activity. A third method, using pentaethylenehexamine with glutaraldehyde, led to the attachment through a long spacer arm and to the preparations with the highest activity. Further optimization of the carrier's structure consisted of changing pore diameters and amount of functional groups on the carrier surface. The highest activity of bound glucoamylase was obtained by linking the protein via glutaraldehyde on NH(2)-Granocel having high pore size and high number of functional groups. The immobilized enzyme was stable throughout extended storage and possessed higher thermal stability.  相似文献   

5.
Affinity chromatography provides a powerful tool for isolation of carbohydrate-binding proteins. However, the choice of the ligand and spacer has an important impact on effectiveness. The influence of several different ligands on qualitative and quantitative aspects of the purification of two beta-galactoside-specific lectins has been evaluated. Sepharose was modified by coupling four types of neoglycoproteins (galactosylated or lactosylated bovine serum albumin with increasing sugar content) and two naturally occurring asialoglycoproteins at similar densities. Carbohydrate ligands at essentially equal density were made accessible to the lectins by seven commonly used methods. The yield of mistletoe lectin was high when lactosylated neoglycoproteins were used for separation. For these resins the sugar incorporation exceeded 10 sugar groups per protein carrier molecule. The yield was similarly high with the asialoglycoproteins and with lactose; the sugar was coupled to the resin as a p-aminophenyl derivative or by means of divinyl sulfone activation. An epoxy group in linkages of galactose or lactose decreased the binding capacity. A quantitatively similar degree of protein yields was obtained for the beta-galactoside-binding protein of bovine heart, although different proteins were obtained when neoglycoproteins were used as ligand. The nature of the affinity ligand in lectin purification can increase the yield and may also influence the profile of the carbohydrate-binding proteins.  相似文献   

6.
Extracellular laccase produced by Cerrena unicolor was immobilized by adsorption or covalent bonds formation on the cellulose-based carrier Granocel. Immobilization was optimized by changing the anchor groups and the methods of activation/immobilization. On the base of measured activity and stability of immobilized preparations, the covalent method was selected. It was shown that coupling of the enzyme to the carrier via divinyl sulfone or glutaraldehyde yielded an enzyme-carrier preparation of high activity and storage stability. Further optimization of the carrier's superstructure consisted in changing pore diameters and amount of functional groups on the carriers surface. Three-fold higher activity was noted when the enzyme was immobilized on NH2-modified Granocel with the highest size exclusion limit and amino group content. Relatively low products sorption was observed on the carrier surface. The effects of protein concentration and pH-value of the coupling mixture on immobilization efficiency were evaluated also.  相似文献   

7.
Affinity chromatography of porcine protease and its zymogen was carried out on immobilized components of specific substrate used for the pepsin determination. For the immobilization of N-acetyl-L-phenylalanine and iodinated derivative of L-tyrosine, divinyl sulfone activated Sepharose was used. Ligands with blocked amino group and free carboxyl one were linked to Sepharose via ethylene diamine spacer using carbodiimide reaction. Conditions of affinity chromatography of porcine pepsin and pepsinogen on the prepared carriers were optimized: the effect of pH, ionic strength and a nature of the buffers used on adsorption of the enzyme and zymogen to an affinity carrier, as well as their elution was studied. The following parameters were taken into consideration: capacity of the prepared affinity matrices, reproducibility of experiments and the enzyme stability. Pepsin was adsorbed to both immobilized ligands at pH 3.5-4.0; for the elution of the enzyme it was necessary to increase ionic strength (up to 0.5 M). For the adsorption of pepsinogen pH 5.2 was found to be optimum, for its desorption, an increase of ionic strength was used.  相似文献   

8.
Thiophilic adsorption: a comparison of model protein behavior   总被引:3,自引:0,他引:3  
T W Hutchens  J Porath 《Biochemistry》1987,26(22):7199-7204
A newly recognized type of protein-ligand interaction phenomenon has resulted in the preparation of simple, nonionic, and highly specific gel derivatives for selective adsorption chromatography. The essential structure of the immobilized ligand can be represented as agarose-CH2CH2SO2CH2CH2SCH2CH2OH, which was prepared by using mercaptoethanol to derivatize [0.9-1.0 mmol (g of dry gel)-1] divinyl sulfone activated agarose (thiophilic or T-gel). Proteins interacting with this ligand are provisionally termed "thiophilic" to recognize their affinity for the definitive sulfone-thioether constituents. To better understand the experimental variables affecting adsorption efficiency and selectivity, several well-characterized proteins with diverse physicochemical features have been evaluated for thiophilic properties. Thiophilic interaction chromatography was investigated as a function of pH as well as the type and concentration of water-structure-forming salts required to promote adsorption. The model proteins characterized varied distinctly in their individual thiophilic affinities. At acidic pH values, a salt-independent adsorption process was observed. Furthermore, a minimum in the salt-promoted thiophilic adsorption tendency at pH 5-6 was found, with varying magnitude, for each of the model proteins evaluated. Recovery of adsorbed proteins routinely varied from 90% to 100%. There does not appear as yet to be any easily recognized physicochemical property associated with either thiophilic or nonthiophilic behavior. These results suggest that thiophilic interaction chromatography is a process that utilizes a previously unrecognized protein-ligand interaction mechanism. We suggest that salt allows the protein into close proximity with the sulfone-thioether group where short-range forces are effective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We describe here a simple, general procedure for the purification of a variety of lectins, and for the preparation of lectin-ferritin conjugates of defined molar composition and binding properties to be used as probes for cell surface saccharides. The technique uses a “universal” affinity column for lectins and their conjugates, which consists of hog sulfated gastric mucin glycopeptides covalently coupled to agarose. The procedure involes: (a) purification of lectins by chromatography of aqueous extracts of seeds or other lectin-containing fluids over the affinity column, followed by desorption of the desired lectin with its hapten suge; (b) iodination of the lectin to serve as a marker during subsequent steps; (c) conjugation of lectin to ferritin with glutaraldehyde; (d) collection of active lectin-ferritin conjugates by affinity chromatography; and (e) separation of monomeric lectin-ferritin conjugates from larger aggregates and unconjugated lectin by gel chromatography. Based on radioactivity and absorbancy at 310 nm for lectin and ferritin, respectively, the conjugates consist of one to two molecules of lectin per ferrritin molecule. Binding studies of native lectins and their ferritin conjugates to dispersed pancreatic acinar cells showed that the conjugation procedure does not significantly alter either the affinity constant of the lectin for its receptor on the cell surface or the number of sites detected.  相似文献   

10.
Human fibroblast interferon binds to a concanavalin A-agarose (Con A-Sepharose) equilibrated with methyl alpha-D-mannopyranoside, or levan; in contrast, it is only partially retarded on a similar column equilibrated with ethylene glycol. Interferon does not bind, however, to a lectin column equilibrated with both methyl alpha-D-mannopyranoside and ethylene glycol. Thus, a hydrophobic interaction between fibroblast interferon and the immobilized lectin seems to account for a large portion of the binding forces involved. Other hydrophobic solutes, such as dioxane, 1, 2-propanediol, and tetraethylammonium chloride, were found equally or more efficient than ethylene glycol in displacing interferon from the lectin column. The elution pattern of interferon from a concanavalin A-agarose (Con A-Sepharose) column, at a constant ehtylene glycol concentration and with an increasing mannoside concentration, reveals the existence of four distinct interferon components. The selective adsorption to and elution from a concanavalin A-agarose (Con A-Sepharose) column resulted in about a 3000-fold purification of human fibroblast interferon and complete recovery of activity. The specific activity of the partially purified interferon preparation is about 5 X 10(7) units per mg of protein. The chromatographic behavior of human leukocyte interferon is remarkable in that it does not bind to concanavalin A-agarose at all indicating the absence of carbohydrate moieties recognizable by the lectin, or if present, their masked status. When concanavalin A was coupled to an agarose matrix (cyanogen bromide activated) at pH 8.0 and 6.0 human fibroblast interferon bound to both lectin-agarose adsorbents and could be recovered with methyl alpha-D-mannopyranoside. Concanavalin A, immobilized directly on agarose matrix at pH 8.0 and 6.0, thus displays only carbohydrate recognition toward interferon. By contrast, unless a hydrophobic solute was included in the solvent containing methyl mannoside, human fibroblast interferon could not be recovered from concanavalin A-agarose coupled at pH 9.0. When concanavalin A was immobilized via molecular arms, in tetrameric as well as dimeric forms, the binding of interferon again occurred exclusively through carbohydrate recognition. Thus, the hydrophobic interaction can be eliminated by appropriate immobilization of the lectin, and then adsorbed glycoproteins, as exemplified here by interferon, can be recovered readily with methyl mannoside alone.  相似文献   

11.
Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilized by covalent bonds formation on the copolymer of butyl acrylate and ethylene glycol dimethacrylate. The carrier had a fixed superstructure and three kinds of anchor groups: –NH2, –OH, and –COOH. Three procedures were used for the activation of the carrier: (i) glutaraldehyde, (ii) divinyl sulfone, and (iii) carbodiimide. It was found that laccase coupling to the carrier via glutaraldehyde yielded an enzyme-carrier preparation of very high activity and storage stability. Consideration was also given to the problem of how the pH, ionic strength, protein concentration and the presence of additives (syringaldazine, guaiacol, Cu2+) affect the coupling procedure via glutaraldehyde. Thermal- and pH-stability, as well as the activity profiles of the best enzyme-carrier preparation, was evaluated. The very high operational stability investigated in a packed bed reactor at 30 °C shows the potential of the preparation for practical use.  相似文献   

12.
New thiophilic matrices and new procedures were used for the purification of immunoglobulins both from human serum and from hybridoma cell cultures containing fetal calf serum. A range of aromatic and heteroaromatic ligands containing hydroxyl or amino groups have been coupled to divinyl sulfone-activated agarose. The resulting affinity matrices have the general formula M-O-CH2-CH2-SO2-CH2-CH2-X-Y, where M is the agarose matrix, X is oxygen or nitrogen, and Y is an aromatic or heteroaromatic compound. Contrary to earlier expectations these matrices showed pronounced thiophilic binding patterns when tested for the selective binding of immunoglobulins from human serum. The binding is influenced by the structure of the aromatic part of the ligand, the ligand concentration, and the concentration and type of lyotropic salt. 2-Hydroxypyridine coupled to divinyl sulfone-activated agarose was used to purify murine monoclonal antibodies (IgG1 and IgM) from hybridoma cell cultures containing fetal calf serum. Compared to previous methods, significantly increased binding capacity (300-1500%) was obtained by using 1.0-1.2 M ammonium sulfate. Purity of the monoclonal antibody may be optimized for each individual clone by washing the column with either a low concentration of ammonium sulfate or polyethylene glycol before elution.  相似文献   

13.
Electron donor acceptor gels based on cyanocarbons have been tested for human serum protein adsorption in the absence of salt-promotion by water-structuring salt. This phenomenon was compared with a normal adsorption process in the presence of salt. The tricyanoaminopropene–divinyl sulfone–agarose displayed unusual protein adsorption properties as binding could occur both independently or dependently of the salt-promotion. The absence of hydrophobic or ionic character of the salt-independent interaction suggests an electron donor acceptor adsorption mechanism which is shown, for the first time, to occur independently of salt-promotion in aqueous solution. Study of the protein adsorption specificity showed similar protein selectivity for the fractions adsorbed in both conditions.  相似文献   

14.
Electron donor acceptor gels based on cyanocarbons have been tested for human serum protein adsorption in the absence of salt-promotion by water-structuring salt. This phenomenon was compared with a normal adsorption process in the presence of salt. The tricyanoaminopropene–divinyl sulfone–agarose displayed unusual protein adsorption properties as binding could occur both independently or dependently of the salt-promotion. The absence of hydrophobic or ionic character of the salt-independent interaction suggests an electron donor acceptor adsorption mechanism which is shown, for the first time, to occur independently of salt-promotion in aqueous solution. Study of the protein adsorption specificity showed similar protein selectivity for the fractions adsorbed in both conditions.  相似文献   

15.
Tong XD  Sun Y 《Biotechnology progress》2003,19(6):1721-1727
A novel magnetic agarose support (MAS) was fabricated for application in a liquid magnetically stabilized fluidized bed (MSFB). It was produced by water-in-oil emulsification method using a mixture of agarose solution and nanometer-sized superparamagnetic Fe(3)O(4) particles as the aqueous phase. The MAS showed good superparamagnetic responsiveness in a magnetic field. A reactive triazine dye, Cibacron blue 3GA (CB), was coupled to the gel to prepare a CB-modified magnetic agarose support (CB-MAS) for protein adsorption. Lysozyme was used as a model protein to test the adsorption equilibrium and kinetic behavior of the CB-MAS. The dependence of bed expansion in the MSFB with a transverse magnetic field on liquid velocity and magnetic field intensity was investigated. Liquid-phase dispersion behavior in the MSFB was examined by measurements of residence time distributions and compared with that obtained in packed and expanded beds. Dynamic lysozyme adsorption in the MSFB was also compared with those in packed and expanded beds. The dynamic binding capacity at 10% breakthrough was estimated at 55.8 mg/mL in the MSFB, higher than that in the expanded bed (31.1 mg/mL) at a liquid velocity of 45 cm/h. The results indicate that the CB-MAS is promising for use in liquid MSFB for protein adsorption.  相似文献   

16.
A one-step purification procedure will yield monoclonal antibodies from cell-culture supernatants and ascites fluids. The chromatographic adsorbant is thiophilic argose, i.e., beaded agarose gel coupled with ligands of thiophilic nature, often with a sulfone group and a sulfur atom. The chromatographic procedure is simply adsorption, wash, elution. The procedure is simple, efficient, and inexpensive.  相似文献   

17.
A rapid and effective method to specifically isolate the antibodies from human serum was presented based on the fast magnetic separation and specific adsorption of the novel thiophilic magnetic polymer nanospheres, which were synthesized by using miniemulsion copolymerization. After the thiophilic heterocyclic ligands of 2‐mercaptonicotinic acid were first activated via divinyl sulfone, they were immobilized on the surface of these magnetic nanospheres, through which the strong specificity to immunoglobulin G was evidently expressed in the isolation of antibodies from human serum. The mild conditions used in the process, including the physiological pH range, low temperature, and low ion strength, were so favorable for keeping the biological activity of antibodies, which resulted in their bioactivity purity to exceed 99%. The efficient isolation, simplicity process, mild conditions, and the conventional equipments required make this technology so attractive to purify antibodies from human serum. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
The kinetics of the nucleophilic addition reactions of divinyl sulfone to amino groups of glycine and model proteins was studied in aqueous solution at 30 degrees C. The rate constants for glycine, bovine serum albumin, and alpha 1-casein were (4.84 +/- 0.58) x 10(-1), (2.97 +/- 0.31) x 10(-2), and (2.38 +/- 0.49) x 10(-2) M-1s-1, respectively. Divinyl sulfone was proposed as a cross-linking reagent for the qualitative detection of protein association in solution. The cross-linking capacity of divinyl sulfone was compared to that of 1,3,5-triacryloylhexahydro-s-triazine.  相似文献   

19.
The properties of subunits of avidin coupled to Sepharose   总被引:8,自引:2,他引:6       下载免费PDF全文
Avidin that had been coupled to Sepharose 4B activated with CNBr retained over 90% of its biotin-binding capacity. When low concentrations of CNBr were used about 75% of the protein could be removed from the Sepharose by washing with guanidinium chloride (6 m). The remaining 25%, the covalently bound subunits, had an almost undiminished capacity for biotin but a decreased affinity. Addition of avidin subunits in guanidinium chloride to the coupled subunits followed by dilution or dialysis restored the original biotin-binding capacity and affinity. Three classes of binding sites were present in preparations of the subunits. About 25% were weak (K=5x10(-8)m), about one third exchanged their biotin in a few minutes (K approximately 10(-10)m) and the remainder were indistinguishable from the native tetramer. The last-named exchanged their bound biotin at a similar rate at pH5 and at pH2, they did not lose their biotin in 6 m-guanidinium chloride and they were resistant to tryptic digestion in the absence of biotin. The proportion of these stable sites could be increased to 65% when the subunits coupled to Sepharose were incubated at 37 degrees C. This increase was reversed by guanidinium chloride, which suggested that it was caused by a temperature-dependent association of covalently linked subunits. This in turn implies a temperature-dependent mobility of the agarose matrix of the Sepharose. Analysis of the spatial distribution of subunits within the Sepharose beads led to the conclusion that the association of subunits implied that they could move through distances greater than 20nm (several hundred A). This mobility and consequent formation of tetramer was greatly decreased when avidin subunits were coupled to Sepharose that had been cross-linked with divinyl sulphone.  相似文献   

20.
In this study, we attempted a limited combinatorial approach for designing affinity ligands based on mercaptoheterocyclic components. The template, divinyl sulfone structure (DVS), which was grafted on poly(ethylene vinyl alcohol) (PEVA) hollow fiber membrane, has served for the tethering of different heterocyclic compounds as pyridine, imidazole, purine and pyrimidine rings. Their ability to adsorb specifically IgG in a salt independent manner out of pure IgG solution, mixture of IgG/albumin and human plasma was demonstrated. Mercapto methyl imidazole (MMI) has shown the best adsorption of IgG in terms of binding capacity. No subclass discrimination was observed on all tested ligands except for mercapto methyl pyrimidine where the major IgG subclass adsorbed was IgG3. MMI gave an IgG binding capacity of 100 microg/cm2 of hollow fiber membrane surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号