首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The calyx fluid in the lateral oviduct of a gregarious parasitoid, Apanteles glomeratus contained ellipsoid particles of ca. 130 × 200 nm. These calyx fluid particles did not appear to be embedded in a fibrous outer layer on the surface of eggs in the lateral oviduct. They were not observed on the surfaces of the eggs 3 to 4 hr after being deposited into the host haemocoele. Oviposition experiments indicated that the occurrence of haemocytic defence reactions of the late 2nd instar larvae of the Pieris rapae crucivora against 1 st instar larvae of the parasitoid increased with a decreasing number of the parasitoid eggs introduced into a host, and that more than 5 to 9 parasitoid eggs were needed for suppressing the ability of the host to encapsulate its parasitoid larvae immediately after hatching. When eggs with calyx fluid obtained from egg reservoir were injected into the host, they were found to be encapsulated 1 to 2 days after the injection. They could not start their embryonic development. When calyx fluid-free 3-hr-old eggs were injected in a number of more than 5 eggs into a 5th instar larva of Pieris, 58% of 31 eggs injected had normally hatched without evoking encapsulation reactions by the host. Both electron microscopic observations of parasitoid eggs in the host haemocoele and the experimental results suggested that calyx fluid or calyx fluid particles of the parasitoid might not be involved in the encapsulation-inhibiting activity of the parasitoid eggs. Rather it was anticipated that a substance (or substances) might be secreted by the parasitoid eggs into the haemocoele of the host, which suppressed defence reactions of the host.  相似文献   

2.
Endoparasitoid wasps rely on maternal protein secretions, including viruses and virus-like particles (VLPs), to overcome host defense reactions. In the ichneumonid Venturia canescens, VLPs are assembled in the nuclei of ovarian calyx gland cells, secreted into the lumen of the gland, and eventually transmitted into the host caterpillar together with the parasitoid egg. One of the genes coding for VLP proteins, termed VLP1, exists in two alleles producing two structurally different proteins. Here we describe the establishment and initial phenotypic characterisation of two parthenogenetic laboratory strains, which differ in VLP1 as well as in other genetic markers. A comparison of calyx tissues from the two strains revealed morphological differences that seem to affect egg movement from the ovarioles into the oviduct. The observed histological changes are correlated with differences in egg maturation and embryonic development causing a delay in larval hatching in one of the strains. Under conditions that favour superparasitism, the two strains differ in the number of offspring produced.  相似文献   

3.
Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) is an indigenous larval endoparasitoid of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) in sub-Saharan Africa. In Kenya, reports suggest that C. sesamiae occurs as two biotypes. Biotype avirulent to B. fusca gets encapsulated by haemocytes in this host and is unable to complete development. Biotype virulent to B. fusca is able to overcome immune defences. Factors present in the calyx fluid such as the PolyDNAviruses (PDV), venom and calyx fluid proteins have been implicated in the variation of C. sesamiae virulence against B. fusca. In the present study, calyx fluid proteins of the two C. sesamiae biotypes were compared using 2-D gel electrophoresis. More protein spots were observed in the virulent parasitoid calyx fluid, but some proteins were specifically observed in the avirulent parasitoid calyx fluid while others were observed in both. To study changes in proteins due to parasitism of B. fusca larvae by the two strains, SDS-PAGE gel were performed on fat body tissues and the haemolymph at three time points. Differences between the two strains were observed in both the fat body and haemolymph tissues. Parasitism-specific protein bands were detectable in fat body tissues of B. fusca larvae parasitized by the two C. sesamiae strains. These proteins were absent in unparasitized larvae. Implications for using C. sesamiae as a biocontrol agent of B. fusca in Africa are discussed.  相似文献   

4.
Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism.  相似文献   

5.
中红侧沟茧蜂雌蜂输卵管萼中病毒样纤丝的特征和功能   总被引:1,自引:0,他引:1  
中红侧沟茧蜂Microplitis mediator雌蜂输卵管萼中有一种病毒样纤丝(virus-like filaments, VLFs)。在蜂卵从卵巢管通过输卵管萼产出的过程中,VLF包裹在蜂卵的表面,随蜂卵进入寄主体内。透射电镜显示,VLF中心是电子致密物质,外有单层膜包被,直径约35 nm。负染技术表明,VLF是具有左螺旋结构的纤丝,负染时的直径约25 nm。不含VLF的蜂卵进入3龄初寄主后,全部被寄主血细胞包囊;含有VLF的蜂卵进入同样的寄主后,88.2%受到保护。VLF对蜂卵的保护作用在不同发育期的寄主中不同,在3龄初的粘虫体内,平均有64.7%的初产卵不被包囊,而在4龄初的粘虫体内,只有9.5%的初产卵受到保护。这一结果说明,VLF只能为蜂卵提供部分的保护作用,需配合其它寄生蜂因子(萼液、蜂毒等)共同作用于寄主的免疫系统。  相似文献   

6.
The particulate fraction of the calyx fluid of the endoparasitoid, Campoletis sonorensis, reduces host weight gain when manually injected into healthy Heliothis virescens larvae. Reduced weight gain of the host, H. virescens, is normally associated with parasitism by C. sonorensis. Electron microscopy has confirmed that the particulate fraction of the calyx fluid is composed of virus particles and it appears that this virus, injected with the egg at oviposition, actually reduces host weight gain. The effect of the virus is negated when the calyx fluid is exposed to ultraviolet light prior to injection. Furthermore, the calyx fluid is effective only if injected into hosts; there is no effect on host weight gain when hosts are fed or topically treated with the virus-containing calyx fluid.  相似文献   

7.
Abstract.  Teratocytes are cells that originate from the extra-embryonic tissues of some hymenopteran parasitoids, typically dissociate upon hatching, and develop in the host haemolymph. They are considered to be involved in parasitoid larval nutrient uptake, host immunosuppression and/or repression of competing parasitoid development. Teratocytes of the parasitoid, Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae) are found in its natural host, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae) and can be cultured in vitro . The present study demonstrates that teratocytes of C. plutellae possess a significantly depressive effect on host cellular immunity. When the hosts are preinjected with 200 cultured teratocytes (corresponding to the normal number of teratocytes released during wasp hatching), haemocyte nodulation is inhibited by approximately 40%, with younger teratocytes being more potent than older ones. Similarly, the medium in which teratocytes are cultured has similar immunosuppressive properties. In comparison, calyx fluid extracted from the C. plutellae ovary also has an immunosuppressive effect on P. xylostella . These two maternal (calyx fluid) and embryonic (teratocytes) factors are additive and result in a reduced level of nodule formation equivalent to that induced by natural parasitization. However, the immunosuppression of the parasitized P. xylostella does not appear to be due to inhibition of phospholipase A2, an immune mediator, because injection of arachidonic acid failed to restore haemocyte nodulation capability.  相似文献   

8.
Abstract Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a solitary braconid endoparasitoid wasp, parasitizes the diamondback moth Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) by suppressing the host defense response, thereby resulting in successful parasitization. During parasitization, ovarian calyx fluid is also delivered into the haemocoel of the host along with the wasp egg. The effect of calyx fluid constituents on haemocyte‐spreading behaviour of P. xylostella is analysed by measuring F‐actin development in the haemocytes. For this purpose, the calyx fluid of C. plutellae is separated into ovarian protein and C. plutellae bracovirus (CpBV). The ovarian protein consists of a wide range of molecular weight proteins, which are apparently different from those of CpBV. When nonparasitized P. xylostella haemocytes are incubated with either ovarian protein or CpBV for 1 or 2 h, haemocytes lose their responsiveness to a cytokine, plasmatocyte‐spreading peptide, in a dose‐dependent manner for each calyx component and fail to exhibit haemocyte‐spreading behaviour. Some CpBV genes are expressed within 1 h of parasitization. The inhibition of haemocyte‐spreading could be explained by measuring F‐actin contents, in which parasitization by C. plutellae inhibits F‐actin development in the haemocytes of P. xylostella. Either ovarian protein or CpBV could inhibit F‐actin development in the nonparasitized haemocytes. In addition, co‐incubation of ovarian protein and CpBV results in significant additive inhibition of both haemocyte‐spreading and F‐actin development in the haemocytes in response to cytokine. These results suggest that both components of C. plutellae calyx fluid function in a synergistic manner, leading to immunosuppression during the early stage of parasitization.  相似文献   

9.
Campoletis sonorensis is a habitual parasitoid of 3rd-instar larvae of Heliothis virescens. C. sonorensis eggs and small glass rods were encapsulated in 5th-instar host larvae implanted in the absence of wasp calyx fluid; prior injection of calyx fluid into larvae suppressed the encapsulation response. Within 8 h of calyx fluid injection there was a removal of approx. 75% of the circulating capsule-forming haemocytes (plasmatocytes). The remaining subpopulation of plasmatocytes, in addition to being incapable of encapsulating targets in vivo, spread at a significantly reduced rate in vitro. Identical changes in plasmatocyte count and behaviour were observed after injection of virus purified from calyx fluid. Additionally, the activity of calyx fluid was abolished after ultraviolet irradiation. The onset of haemocytic abnormalities occurred more rapidly after natural parasitism of 3rd-instar host larvae. The cell-free haemolymph of calyx fluid-injected 5th-instar larvae also retarded the spreading of plasmatocytes from non-injected control larvae in vitro. We conclude that the abnormalities induced in H. virescens plasmatocytes by C. sonorensis virus contribute to the suppression of encapsulation.  相似文献   

10.
Extracellular serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid, local reactions to physiological or pathological cues. The serine protease cascade that triggers the Toll signaling pathway in Drosophila embryogenesis shares several organizational characteristics with those involved in mammalian complement and blood clotting. One of the hallmarks of such cascades is their regulation by serine protease inhibitors (serpins). Serpins act as suicide substrates and are cleaved by their target protease, forming an essentially irreversible 1:1 complex. The biological importance of serpins is highlighted by serpin dysfunction diseases, such as thrombosis caused by a deficiency in antithrombin. Here, we describe how a serpin controls the serine protease cascade, leading to Toll pathway activation. Female flies deficient in Serpin-27A produce embryos that lack dorsal-ventral polarity and show uniform high levels of Toll signaling. Since this serpin has been recently shown to restrain an immune reaction in the blood of Drosophila, it demonstrates that proteolysis can be regulated by the same serpin in different biological contexts.  相似文献   

11.
Crude venom and calyx fluid from Cotesia plutellae (Hymenoptera Braconidae) were assayed for biological activity toward hemocytes of Plutella xylostella (Lepidoptera Plutellidae). Venom from C. plutellae displayed high activity toward the spreading of plasmatocytes of P. xylostella early in the incubation period, and the inhibition was more severe as the concentration of venom increased. However, most inhibited hemocytes spread normally after being incubated for 4h. No effects were found toward granular cells from the host. Additionally, the venom from C. plutellae had some lethal effects on hemocytes of P. xylostella at high concentrations. In contrast, when incubated with different concentrations of calyx fluid, the spreading of some hemocytes was inhibited, some began to disintegrate, and some were badly damaged with only the nucleus left. After 4h, the majority of hemocytes died. The same results were observed when hemocytes were incubated in calyx fluid together with venom. These results show that calyx fluid from C. plutellae may play a major role in the suppression of the host immune system, whereas venom from C. plutellae has a limited effect on hemocytes and probably synergizes the effect of calyx fluid or polydnavirus.  相似文献   

12.
Polydnaviruses of many braconid and ichneumonid endoparasitoids play an important role in the successful parasitism of their hosts. The host's development is altered and its immune response is also suppressed. In this study, we compared the effects of calyx fluid and venom on the development of the natural host, Helicoverpa zea, and two atypical hosts that the parasitoid does not normally attack in nature, Galleria mellonella and Spodoptera exigua. The levels of calyx fluid and\or venom injected was 0.05, 0.1 and 0.2 female equivalents (FE)/larva. In H. zea, calyx fluid significantly reduced larval growth on day 5 post injection. Venom alone did not affect larval growth but it synergized the action of calyx fluid by reducing growth earlier and for a longer period after injection. Other effects of calyx fluid on the host, either alone or in combination with venom, were an increase in developmental period, and a reduction in percent emergence and weight of adult moths. The percentage of H. zea larvae that pupated was not affected by calyx fluid or venom. In Galleria mellonella, venom alone reduced larval growth comparable to calyx fluid and both tissues induced the effects on day 1 post injection. Other effects caused by calyx fluid or venom alone or the combination were a reduction in percent pupation and emergence, and the average adult weight. In S. exigua, high mortality occurred when 4th instar larvae were injected. Although the injection of larger fifth instars reduced overall mortality, the sham-injected larvae only gained weight during the first 24 hours after injection (from day 0 to day 1). However, adults were produced at all doses of calyx fluid or venom. The effects of the virus on development in this species were a prolongation of the larval stage and reduction of adult weight by calyx fluid in combination with venom. In conclusion, injections of calyx fluid and venom of Microplitis croceipes can differentially affect the growth and development of its natural host H. zea, and atypical host, G. mellonella, but only a minimal effect was observed in S. exigua.  相似文献   

13.
Summary Immature stages of the ichneumonid parasitoid, Campoletis sonorensis, develop within the haemocoel of its noctuid host, Heliothis virescens. The host cannot encapsulate the parasitoid egg owing to the suppressive effect of the polydnavirus-laden calyx fluid injected by the female parasitoid during oviposition. We have examined the effects of injection of calyx fluid on the following haemocytic manifestations of the immune system of 5th-instar larvae of H. virescens: encapsulation, nodulation, phagocytosis, erythrocyte rosetting and coagulation. Of these phenomena, only those requiring the formation of a multicellular sheath of plasmatocytes were affected. In general, encapsulation was fully suppressed; all of the C. sonorensis eggs and most of the glass rods implanted as targets were devoid of attached haemocytes 3 days after implantation although a few of the latter were coated by a sparsely distributed layer of granulocytes. Plasmatocytes also appeared to be present in thicker depositions of haemocytes. In nodulation, only the second, encapsulation-like phase was inhibited. The resistant first stage, involving the entrapment of particles by haemocytes, only resulted in the formation of amorphous, disorganized nodules. Granulocyte-dependent aspects of the immune system (phagocytosis, rosetting and possibly coagulation and the first stage of encapsulation and nodulation) occurred normally. The data suggest that in 5th-instar hosts injection of calyx fluid acts specifically on plasmatocyte function.  相似文献   

14.
菜蛾盘绒茧蜂卵携带的免疫抑制因子   总被引:1,自引:0,他引:1  
抑制寄主昆虫的免疫反应是内寄生蜂存活的关键。菜蛾盘绒茧蜂Cotesia vestalis(Haliday)寄生小菜蛾Plutella xylostella (L.)幼虫后,蜂卵如何逃避和抑制寄主的免疫攻击,尚未得到全面揭示。本文采用电镜技术系统观察了菜蛾盘绒茧蜂卵表面的超微结构。结果显示:蜂卵表面覆盖有纤维层和絮状的类病毒样纤丝(VLFs),同时携带了含多分DNA病毒粒子(PDV)的萼液。在寄生初期,包裹在蜂卵表面的纤维层和VLFs首先起到保护蜂卵不被小菜蛾血细胞包囊的被动防御作用。随后,PDV发挥主动的免疫抑制作用。通过假寄生手段,证明了菜蛾盘绒茧蜂PDV (CvBV) 具有较持久的克服寄主免疫攻击的能力,是主要的免疫抑制因子。在假寄生后连续8 d的观察时间内,菜蛾盘绒茧蜂的蜂卵均未被包囊。结果提示,在菜蛾盘绒茧蜂-小菜蛾寄生体系中,菜蛾盘绒茧蜂采取被动防御和主动攻击两种方式应对寄主小菜蛾的免疫攻击。  相似文献   

15.
Effects of female wasp reproductive gland secretions, host fat body and hemolymph, and mechanical constriction of the parasitoid egg on protein synthesis were studied in eggs of Microplitis croceipes (Braconidae) dissected from the wasp ovary. Protein synthesis was measured by 35S-methionine incorporation in eggs held in tissue culture medium for 16 h after treatment. Synthesis was stimulated in oocytes obtained from three regions of the ovary (egg tube, reservoir, and calyx) by fat body and venom gland but not by calyx fluid. A combination of fat body, venom gland, and calyx fluid did not enhance the level of synthesis relative to that of fat body or venom gland alone. Host hemolymph inhibited protein synthesis when incubated directly with the dissected eggs but not when the eggs were collected from an artificial oviposition substrate (AOS) containing hemolymph. The inhibitory effect of the hemolymph is thought to be due to the occurrence of melanization. Mechanical constriction did not alter the rate of synthesis, confirming an earlier report that synthesis in newly deposited eggs in ongoing and is not dependent on mechanical activation during the act of oviposition. Mechanisms responsible for sustaining protein synthesis in eggs for 16 h in vitro after their exposure to host hemolymph in the AOSs or fat body and venom gland are not known. Only a small percentage (less than 2%) of dissected ovarial reservoir oocytes that were mechanically constricted and exposed to the venom gland, calyx fluid, and host fat body hatched in vitro. In contrast, an earlier study demonstrated that 38% of eggs oviposited by female wasps into AOSs developed and hatched.  相似文献   

16.
Han J  Zhang H  Min G  Kemler D  Hashimoto C 《FEBS letters》2000,468(2-3):194-198
Serpins define a large protein family in which most members function as serine protease inhibitors. Here we report the results of a search for serpins in Drosophila melanogaster that are potentially required for oogenesis or embryogenesis. We cloned and sequenced ovarian cDNAs that encode six distinct proteins having extensive sequence similarity to mammalian serpins, including residues important in the serpin inhibition mechanism. One of these new serpins in recombinant form inactivates, and complexes with, trypsin-like proteases in vitro. To our knowledge, these results represent the first evidence for a serpin in Drosophila that functions as a serine protease inhibitor.  相似文献   

17.
Abstract: Two isoforms of a protease inhibitor of the serpin family (p62) have been purified from bighead carp perimeningeal fluid. Both isoforms migrate with an apparent molecular mass of 62 kDa on reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gels. Both proteins inhibited the activities of bovine trypsin, bovine chymotrypsin, and porcine pancreatic elastase. They also formed complexes with these proteases that were resistant to sodium dodecyl sulfate treatment. p62 exists in the extracts of all tissues examined, including brain, head kidney, kidney, liver, muscle, ovary, pituitary, and spleen. It is also present in serum, ovarian fluid, and milt as well as perimeningeal fluid. The protease inhibitor is a glycoprotein, and its carbohydrate moiety could be removed by endoglycosidase F. Because p62 resembles mammalian α1-antitrypsin in many aspects, it is likely a fish equivalent of α1-antitrypsin.  相似文献   

18.
The humoral response to fungal and Gram-positive infections is regulated by the serpin-family inhibitor, Necrotic. Following immune-challenge, a proteolytic cascade is activated which signals through the Toll receptor. Toll activation results in a range of antibiotic peptides being synthesised in the fat-body and exported to the haemolymph. As with mammalian serpins, Necrotic turnover in Drosophila is rapid. This serpin is synthesised in the fat-body, but its site of degradation has been unclear. By “freezing” endocytosis with a temperature sensitive Dynamin mutation, we demonstrate that Necrotic is removed from the haemolymph in two groups of giant cells: the garland and pericardial athrocytes. Necrotic uptake responds rapidly to infection, being visibly increased after 30 mins and peaking at 6–8 hours. Co-localisation of anti-Nec with anti-AP50, Rab5, and Rab7 antibodies establishes that the serpin is processed through multi-vesicular bodies and delivered to the lysosome, where it co-localises with the ubiquitin-binding protein, HRS. Nec does not co-localise with Rab11, indicating that the serpin is not re-exported from athrocytes. Instead, mutations which block late endosome/lysosome fusion (dor, hk, and car) cause accumulation of Necrotic-positive endosomes, even in the absence of infection. Knockdown of the 6 Drosophila orthologues of the mammalian LDL receptor family with dsRNA identifies LpR1 as an enhancer of the immune response. Uptake of Necrotic from the haemolymph is blocked by a chromosomal deletion of LpR1. In conclusion, we identify the cells and the receptor molecule responsible for the uptake and degradation of the Necrotic serpin in Drosophila melanogaster. The scavenging of serpin/proteinase complexes may be a critical step in the regulation of proteolytic cascades.  相似文献   

19.
In the course of studies on the regulation of plasminogen activator-mediated extracellular matrix degradation in muscle we found the presence of a factor, a cellular inhibitor of serine proteases having features similar to the serpin protease nexin I (PNI). This factor was present in the medium and at maximum concentration following fusion of skeletal muscle cells in culture. The ability of the PNI homologue in mouse muscle to inhibit ECM degradation by urokinase in myoblast medium was compared to that of human PNI purified from human fibroblasts. Stable (to SDS) 1:1 molar ratio complex formation between PNI and proteases, the proposed means by which these enzymes are regulated and removed, was also detected. Cell surface receptors for protease:PNI complexes, the specific binding sites for inactive complex internalization, were found on multinucleated myotubes, while little or no receptor activity was detected on myoblasts. These data suggest that developmental regulation of a) increased PNI proteolytic inhibitory activity expression and b) the appearance of protease:inhibitor complex receptors on muscle cell surfaces during myogenesis may constitute important regulatory features of muscle surface proteolytic activity. They complement previous studies of proteoglycan metabolism in muscle, which itself contains molecules capable of regulating the activity of myotube surface proteases.  相似文献   

20.
During spawning, eggs of most fish species entering the aquatic environment remain fertilizable for a relatively short period of time. This is due to the “spontaneous egg activation” giving rise to the fertilization membrane, which prevents the penetration of excessive and foreign sperm into the egg during normal fertilization. This work demonstrates that the fertilization membrane formation and the loss of fertilizability in aqueous solutions of different composition are inhibited by protease inhibitors, in particular, leupeptin and aprotinin. The presence of natural protease inhibitors in the ovarian fluid that prevent spontaneous egg activation is proposed. The decrease in the concentration of these inhibitors as the ovarian fluid is diluted in aquatic medium during spawning can explain egg activation in the absence of sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号