首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金黄色葡萄球菌存在两个核酸酶编码基因,一个是葡萄球菌核酸酶(Staphylococcal nuclease,SNase),命名为nuc1,另一个是耐热核酸酶(Thermonuclease,TNase),命名为nuc2,nuc2是一个新的候选基因,以往认为金黄色葡萄球菌中的核酸酶只源于一个编码基因nuc1,为了进一步研究nuc2基因的功能,首先要将金黄色葡萄球菌nuc1基因缺失。本研究目的就是通过构建同源重组质粒pBT2Δnuc1,将其电转入金黄色葡萄球菌菌株RN4220中,获得nuc1基因缺失突变株。经过了七轮培养和筛选,同源重组几率为2%(7/345),筛选出的nuc1突变株用PCR方法和RT-PCR进行了验证,从而获得了nuc1基因缺失突变株RN4220Δnuc1。  相似文献   

2.
3.
Staphylococcal nuclease (here termed as Nuc1) is considered an important virulence factor and a unique marker widely used in the detection of Staphylococcus aureus. A second functional thermostable nuclease (here termed as Nuc2) in S. aureus was characterized after recombinant expression in Escherichia coli. Sequence alignment and phylogenetic analysis revealed that Nuc2 was a more conserved protein in the staphylococci group compared with Nuc1. Recombinant Nuc2 showed nuclease activity in the zymogram test and was able to degrade various types of nucleic acids. The optimal reaction temperature and pH for Nuc2 were 50 °C and pH 10, respectively. The enzymatic activity of Nuc2 was stimulated in the presence of Ca2+ (0.05 mM), Mg2+ (0.5 mM), dithiothreitol, β-mecaptoethanol, TritonX-100, Tween-20, and urea; however, activity decreased sharply when exposed to heavy metals such as Zn2+ and Mn2+, and in the presence of EDTA or SDS. Nuc2 showed weaker activity, lower thermostability and different sensitivity to these chemical agents compared with Nuc1, which was consistent with differences in the sequence pattern and structure predicted. Furthermore, a nuc1 and nuc2 double deletion mutant of S. aureus and respective complementation experiments suggest a major role for nuc1 in terms of thermonuclease activity in S. aureus.  相似文献   

4.
5.
The Hly region from the chromosome of Vibrio cholerae El Tor strain RV79(Hly-) and the nonhemolytic classical strain 569B were cloned into plasmid vector pBR322. Escherichia coli K-12 transformants possessing these recombinant plasmids were nonhemolytic and were detected with a 32P-labeled hly-specific DNA probe. Restriction endonuclease Sau3AI digestions of the cloned hly loci of two independently obtained RV79(Hly+) convertants, when compared with the digests of cloned RV79(Hly-) loci, revealed that an apparent alteration (10 to 15 base pairs) had occurred. In contrast, an apparent 20-base-pair deletion was present in the cloned hly locus of the classical biotype V. cholerae strain 569B. Maxicell analysis and immunoprecipitation of labeled proteins of E. coli which are encoded by the cloned hly loci of RV79(Hly+) and from nuclease BAL 31-deleted plasmids, as well as immunoprecipitation of [35S]methionine-labeled V. cholerae proteins, suggest that the hemolysin is an 84,000-dalton polypeptide.  相似文献   

6.
7.
An automated sandwich immunoassay with specific polyclonal antibodies for the detection of Staphylococcus aureus thermostable nuclease (DNase) is described. To evaluate this assay, different quantities of purified S. aureus nuclease were added to dairy products. Additionally, staphylococcal counts and nuclease activity of milk samples inoculated with S. aureus were determined. Different extraction procedures were performed and compared. The results indicated that the automated test was a reliable method for detecting DNase activity in milk products. The procedure was completed in 2 h and detected 1 ng of DNase ml-1. Detection of the DNase was especially useful in cheeses and could be used to confirm positive enterotoxin results.  相似文献   

8.
1. As a result of the mutation of Staphylococcus aureus by pyrithiamine, deletion of the enzyme thiaminokinase in the system occurs. Some properties of thiaminokinase including the effects of pH, pyrophosphate donor nucleotides and metal ions on the enzyme in the parent S. aureus have been studied. Cell-free extract from mutant strain has been studied under similar conditions and thiaminokinase activity was found to be absent. Addition of thiamine (10mug./ml.) to the medium containing pyrithiamine (required for the growth of the mutant strain) did not give rise to thiaminokinase activity in the mutant bacteria. 2. The parent and the mutant strains of S. aureus have been studied for the fermentative production of acetylmethylcarbinol (3-hydroxybutan-2-one) and the mutant strain did not produce acetylmethylcarbinol under the conditions used.  相似文献   

9.
Previously in our laboratory, a PCR-based strategy was used to isolate potential sensor gene fragments from the Staphyloccus aureus genome. One DNA fragment was isolated that shared strong sequence similarity to genes encoding bacterial sensor proteins, indicating that it originated from within a potential staphylococcal sensor protein gene. In this study, the DNA surrounding the PCR product origin was cloned and sequenced. This analysis revealed the presence of two genes, termed lytS and lytR, whose deduced amino acid sequences were similar to those of members of the two-component regulatory system family of proteins. S. aureus cells containing an insertional disruption of lytS exhibited a marked propensity to form aggregates in liquid culture, suggesting that alterations in cell surface components exist in this strain. Transmission electron microscopic examination of these cells revealed that the cell surface was rough and diffuse and that a large proportion of the cell population had lysed. The lytS mutant also exhibited increased autolysis and an altered level of murein hydrolase activity produced compared with the parental strain, NCTC 8325-4. These data suggest that the lytS and lytR gene products control the rate of autolysis in S. aureus by affecting the intrinsic murein hydrolase activity associated with the cell.  相似文献   

10.
The lethal activity of a thymineless mutant of Staphylococcus aureus Wood 46 strain has been compared with that of three naturally occurring strains: parent Wood 46, Smith, and coagulase-negative SA-13. The thymineless mutant and the parent Wood 46 strain showed a sharp decline in culturable units from the peritoneal cavity in the first 4 hr after their injection. After 6 hr, that is, 2 hr before the mice began to die, the number of culturable units of the thymineless mutant was still declining, whereas that of the parent strain increased; for both strains, the number of units was still lower than that of the inoculum. Although the thymineless mutant, unlike the parent strain, was apparently unable to multiply in mouse peritoneal cavity, it killed mice at a similar rate. The highly virulent Smith strain known to multiply rapidly and the avirulent coagulase-negative SA-13 strain were used as additional controls. Under our experimental conditions, death of mice after the injection of the thymineless mutant in the peritoneal cavity did not seem to be due to bacterial multiplication but to toxicity, death being delayed by antitoxin. The pyrimidine-requiring auxotroph we used could be better material than killed bacteria to study some aspects of the lethal activity of S. aureus.  相似文献   

11.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc). Considering reports that extracellular DNA (eDNA) is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation.  相似文献   

12.
Properties of Two Nuclease Genes in NEUROSPORA CRASSA   总被引:5,自引:2,他引:3       下载免费PDF全文
Two genes, nuc-1 and nuc-2, of Neurospora crassa which were responsible for the nucleic acid digestion, were located on linkage group 1 and 2, respectively. A temperature-sensitive mutant (B1ts-2) was obtained from a nuc-2 mutant. Nuclease mutants showed a reduced activity of nuclease N(3) which was found to be a complex consisting of nuclease N(3) (') and inhibitor molecule. Nuclease N(3), nuclease N(3) (') and inhibitor were partially purified and estimated to have the approximate molecular weights of 38,000, 12,500 and 25,000 respectively. A nuc-1 mutant produced the nuclease N(3) (') altered in thermolability. A nuc-2 mutant and B1ts-2 produced the inhibitor altered in the capacity to inhibit nuclease N(3) (') activity. The inhibitor prepared from B1ts-2 was more thermostable than that from other strains. From these results, it was suggested that the nuc-1 gene is the structural gene for nuclease N(3) (') and the nuc-2 gene that for the inhibitor. A possible involvement of this enzyme-inhibitor complex in the regulation of nuclease activity and synthesis of other proteins was suggested.  相似文献   

13.
BackgroundS1-like nucleases are widespread enzymes commonly used in biotechnology and molecular biology. Although it is commonly believed that they are mainly Zn2+-dependent acidic enzymes, we have found that numerous members of this family deviate from this rule. Therefore, in this work, we decided to check how broad is the range of non‑zinc-dependent S1-like nucleases and what is the molecular basis of their activities.MethodsS1-like nucleases chosen for analysis were achieved through heterologous expression in appropriate eukaryotic hosts. To characterize nucleases' active-site properties, point mutations were introduced in selected positions. The enzymatic activities of wild-type and mutant nucleases were tested by in-gel nuclease activity assay.ResultsWe discovered that S1-like nucleases encoded by non-vascular plants and single-celled protozoa, like their higher plant homologues, exhibit a large variety of catalytic properties. We have shown that these individual properties are determined by specific non-conserved active site residues.ConclusionsOur findings demonstrate that mutations that occur during evolution can significantly alter the catalytic properties of S1-like nucleases. As a result, different ions can compete for particular S1-type nucleases' active sites. This phenomenon undermines the existing classification of S1-like nucleases.General significanceOur findings have numerous implications for applications and understanding the S1-like nucleases' biological functions. For example, new biotechnological applications should take into account their unexpected catalytic properties. Moreover, these results demonstrate that the trinuclear zinc-based model commonly used to characterize the catalytic activities of S1-like nucleases is insufficient to explain the actions of non‑zinc-dependent members of this family.  相似文献   

14.
Streptococcus iniae causes invasive disease and death in fish, and to a lesser extent, sporadic cases of soft-tissue infections in humans. A two-component system termed sivS/R, which regulates capsule expression, was previously identified and characterized. In this study, it is shown that a sivS/R deletion-insertion mutant, termed 9117Deltasiv, causes transient bacteremia and reduced virulence compared with the parent strain when tested in a murine model of bacteremic infection. Furthermore, real-time PCR studies indicated that SivS/R regulates the expression levels of the streptolysin S structural gene, sagA, as well as the CAMP factor gene, cfi. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of S. iniae spheroplasts revealed downregulation of three surface proteins in the mutant strain compared with the parent strain. These proteins were identified by MS to be a putative lipoprotein, a hyaluronate-associated protein and a pyruvate kinase. This study demonstrates that SivS/R regulates virulence in vivo, and controls the expression of a number of genes in S. iniae.  相似文献   

15.
A single insertion of transposon Tn551 into a unique chromosomal locus of Staphylococcus aureus ISP479C has resulted in a pleiotropic effect on the expression of both extracellular and cell wall proteins. In particular, the expression of cell wall protein A and clumping activity with fibrinogen were rendered undetectable in the mutant 1E3 compared with the parent. The secretion of alpha-hemolysin in mutant 1E3 was modestly increased. Southern blot and phenotypic analyses indicated that this locus is distinct from agr, xpr, and sar, three previously described global regulatory loci. Transduction experiments demonstrated that the genotype associated with mutant 1E3 could be transferred back into the parental strain ISP479C. The transductant 1E3-2 displayed a phenotypic profile similar to that of the original mutant. Northern (RNA) blot studies showed that this locus may be involved in modulating target genes at the mRNA level. In the rabbit endocarditis model, there was a significant decrease in both the infectivity rate and intravegetation bacterial density with mutant 1E3 compared with the parent at an inoculum of 10(3) CFU. Since protein A and the fibrinogen-binding protein(s) are major surface proteins that may mediate bacterial adhesion to host tissues, this locus may be an important genetic element involved in the expression of virulence determinants in S. aureus.  相似文献   

16.
In Gram-positive bacteria, the expression of iron-regulated genes is mediated by a class of divalent metal-dependent regulatory (DmdR) proteins. We cloned and characterized two dmdR genes of Streptomyces coelicolor that were located in two different nonoverlapping cosmids. Functional analysis of dmdR1 and dmdR2 was performed by deletion of each copy. Deletion of dmdR1 resulted in the derepression of at least eight proteins and in the repression of three others, as shown by 2D proteome analysis. These 11 proteins were characterized by MALDI-TOF peptide mass fingerprinting. The proteins that show an increased level in the mutant correspond to a DNA-binding hemoprotein, iron-metabolism proteins and several divalent metal-regulated enzymes. The levels of two other proteins--a superoxide dismutase and a specific glutamatic dehydrogenase--were found to decrease in this mutant. Complementation of the dmdR1-deletion mutant with the wild-type dmdR1 allele restored the normal proteome profile. By contrast, deletion of dmdR2 did not affect significantly the protein profile of S. coelicolor. One of the proteins (P1, a phosphatidylethanolamine-binding protein), overexpressed in the dmdR1-deleted mutant, is encoded by ORF3 located immediately upstream of dmdR2; expression of both ORF3 and dmdR2 is negatively controlled by DmdR1. Western blot analysis confirmed that dmdR2 is only expressed when dmdR1 is disrupted. Species of Streptomyces have evolved an elaborated regulatory mechanism mediated by the DmdR proteins to control the expression of divalent metal-regulated genes.  相似文献   

17.
Staphylococcus aureus spreads on the surface of soft agar, a phenomenon we termed "colony spreading." Here, we found that S. aureus culture supernatant inhibited colony spreading. We purified δ-hemolysin (Hld, δ-toxin), a major protein secreted from S. aureus, as a compound that inhibits colony spreading. The culture supernatants of hld-disrupted mutants had 30-fold lower colony-spreading inhibitory activity than those of the parent strain. Furthermore, hld-disrupted mutants had higher colony-spreading ability than the parent strain. These results suggest that S. aureus negatively regulates colony spreading by secreting δ-hemolysin.  相似文献   

18.
Ulcerative keratitis is among the leading ocular bacterial infections, and Streptococcus aureus accounts for approximately 25% of cases in some surveys. Although S. aureus expresses numerous virulence factors, many of which are under the control of staphylococcal global regulatory genes, their pathophysiologic roles in keratitis are largely unknown. Similarly, the nature of the host response during S. aureus keratitis is unclear. Following a review of previously published research on the pathophysiology of S. aureus ocular infection, we present the results of a study designed to assess the host-parasite relationship between S. aureus and human corneal epithelial cells (HCECs) in vitro. In this model system, a wild-type S. aureus strain and its isogenic mutants harboring mutations in agr and sar global regulatory genes or fibronectin-binding proteins A and B (fnbAB) were tested for their ability to bind and invade confluent HCEC monolayers. The contribution of host cell factors was assessed by preincubating HCECs with various inhibitory agents. These studies demonstrated that S. aureus not only adhered to the surface of HCECs but was also internalized, as has been previously observed in other nonocular cell lines. Adherence and invasion of HCECs was saturable at 1 h of incubation in the presence of approximately 10(7) CFU per HCEC monolayer (multiplicity of infection approximately 10). A mutant defective in both agr and sar global regulators was not significantly different in invasive capacity compared to its isogenic wild-type parent strain. In contrast, mutations in fibronectin-binding proteins A and B (fnbAB) reduced the invasiveness of S. aureus by 99% compared to the wild-type strain. Pretreatment of HCECs with colchicine had little effect on S. aureus invasion. In sharp contrast, cytochalasin D and genistein were each capable of inhibiting invasion by >99%. In summary, the results of this study point to fibronectin-binding protein as a key S. aureus surface adhesin facilitating invasion of HCECs in vitro. Furthermore, these results suggest an active mechanism for S. aureus internalization by HCECs, likely involving actin polymerization and tyrosine kinase activity. Additional studies are warranted to determine the applicability of these findings in vivo, and to facilitate the rational design of therapeutic agents aimed at blocking the establishment and progression of S. aureus keratitis.  相似文献   

19.
Staphylococcus aureus colonizes the lungs of cystic fibrosis patients and treatment with antibiotics usually results in recurrent and relapsing infections. We have shown that S. aureus can invade and replicate within a cystic fibrosis epithelial cell line (CFT-1), and that these internalized bacteria subsequently escape from the endocytic vesicle. The a ccessory g ene r egulator, agr , in S. aureus has been shown to control the expression of a large number of secreted toxins involved in virulence. Here we show that an agr mutant of S. aureus strain RN6390 was unable to escape from the endocytic vesicle after invasion of the CFT-1 cells using markers of vesicular trafficking (LAMP-1 and 2, LysoTracker and Vacuolar-ATPase). Trafficking analysis of live S. aureus which did not express alpha-haemolysin, a specific agr regulated toxin, revealed a defect in vesicular escape that was undistinguishable from the trafficking defect exhibited by the agr mutant. Furthermore, overexpression of alpha-haemolysin under an inducible promoter in an agr mutant of S. aureus partially restored the phagosome-escaping phenotype of an agr mutant. These results demonstrate that the expression of agr is required for vesicular escape, and that biologically active alpha-haemolysin is required for S. aureus escape from the endocytic vesicle into the cytosol of CFT-1 cells.  相似文献   

20.
The pal 4 nuclease (termed I-Sce II) is encoded in the group I al 4 intron of the COX I gene of Saccharomyces cerevisiae. It introduces a specific double-strand break at the junction of the two exons A4-A5 and thus mediates the insertion of the intron into an intronless strain. To define the sequence recognized by pal 4 we introduced 35 single mutations in its target sequence and examined their cleavage properties either in vivo in E. coli (when different forms of the pal 4 proteins were artificially produced) or in vitro with mitochondrial extracts of a mutant yeast strain blocked in the splicing of the al 4 intron. We also detected the pal 4 DNA endonuclease activity in extracts of the wild type strain. The results suggest that 6 to 9 noncontiguous bases in the 17 base-pair region examined are necessary for pal 4 nuclease to bind and cleave its recognition site. We observed that the pal 4 nuclease specificity can be significantly different with the different forms of the protein thus explaining why only some forms are highly toxic in E. coli. This study shows that pal 4 recognition site is a complex phenomenon and this might have evolutionary implications on the transfer properties of the intron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号