首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UV-spectral and chromatographic analyses of the derivatives of the two synthetic standards 7-ethylguanosine and 1,7-diethylguanosine are here reported. The derivatives obtained from the dialkyl compound exhibit a striking similarity to those found in the "pyrimidine-nucleotide-like" fraction of rat liver tRNA ethylated in vivo by ethionine. The finding of imidazole-ring-opened products in tRNA ethylation by ethionine could be significant from the point of view of chemical carcinogenesis: in fact, imidazole-ring-opening of 1,7-dialkylguanosines directly at level of RNA with consequent formation of substituted pyrimidines is a transversion, i.e. a mutagenic event which would cause a change in the expression of genetic information since a purine has been transformed into a pyrimidine.  相似文献   

2.
The mechanism of ethionine carcinogenesis and more generally the relationship between alkylation of nucleic acids by chemical carcinogens and oncogenesis still remain obscure. In the present study the rat liver tRNA ethylation by L-[ethyl-1-3H]ethionine was reinvestigated by examining in particular the highly radioactive 'pyrimidine-nucleotide-like' fraction found earlier in acid hydrolysates of hepatic tRNA from ethionine-treated rats. The following results were obtained: (1) ultraviolet-spectral and chromatographic analyses showed the presence of 1,7-diethylguanosine in this 'pyrimidine-nucleotide-like' fraction; (2) the dialkyl compound was recovered exclusively in the form of imidazole-ring-opened derivatives. When [1-14C]ethylnitrosourea was used as alkylating agent, the in vivo ethylation pattern of tRNA from various organs of rat showed an analogous radioactive 'pyrimidine-nucleotide-like' fraction as main radioactive product. On the contrary, tRNA ethylation pattern after in vitro reaction with [1-14C]ethylnitrosourea exhibited a main radioactivity peak (85% of the total radioactivity recovered) in coincidence of the chromatographic area of 1,7-diethylguanine. The 1,7-diethylguanosine moieties of tRNA were extremely labile both under physiological and alkaline conditions. The 1,7-diethylguanine-associated radioactivity was completely lost from [14C]ethyl-tRNA after only 7 h incubation at 37 degrees C and pH 7.3, while at pH 11.4 this process was preceded by the conversion of the 1,7-diethylguanosine residues into imidazole-ring-opened derivatives.  相似文献   

3.
Two unknown radioactive areas appeared after radioautography and two dimensional paper chromatography of culture medium in which Escherichia coli was grown. These materials were studied by paper chromatography and paper electrophoresis of several derivatives and identified as ethionine and ethionine sulfone, the latter an artifact. Chromatographic coincidence of the unknowns and their derivatives with authentic materials establishes the identification. Ethionine was found in cellular extracts and in the growth media of Escherichia coli, Bacillus megaterium, Pseudomonas aeruginosa, and Aerobacter aerogenes but not in Scenedesmus, Saccharomyces cerevisiae, or bovine lymphosarcoma cells. Ethionine was synthesized by resting E. coli cultures from radioactive sulfate and from radioactive methionine. Growing cells labeled ethionine within 1 minute after addition of radioactive sulfate to cultures. Levels of radioactivity in ethionine increased with time. No incorporation of this amino acid could be detected in the cellular proteins formed under the conditions of this study.  相似文献   

4.
Aprocedure is described for the synthesis of radioactive 3-methylthiopropionate, a recently isolated metabolite of mammalian methionine metabolism. The method is a two-step synthesis whereby correspondingly labeled methionine is degraded by ninhydrin to 3-methylthiopropionaldehyde and then specifically oxidized to 3-methylthiopropionate without oxidation of the sulfur atom by the yeast enzyme, aldehyde dehydrogenase. Radiochemical purity of the isolated product was established by paper, thin-layer, and gas-liquid chromatography. This procedure is economical and readily applicable to the synthesis of other alkylthio fatty acids for the study of S-methylcysteine and ethionine metabolism and probably for the synthesis of radioactive intermediates of branched chain amino acids.  相似文献   

5.
1. An acetyl-CoA--S-substituted cysteine N-acetyltransferase in rat liver and kidney preparations was investigated, by using an assay involving incubations with S-benzyl-L-cysteine and [l-14C]acetyl-CoA and extraction of the radioactive product with ethyl acetate. 2. The enzyme was associated with the microsomal fraction and could not be solubilized. Metal ions, EDTA and detergents did not significantly affect the enzyme activity. p-Chloromercuribenzoate and N-ethylmaleimide inhibited the enzyme. 3. Other S-substituted cysteines were acetylated at about the same rate as S-benzyl-L-cysteine. Acetylation of cysteine itself and of methionine, ethionine and tryptophan could be detected but was much slower. Acetylation of aspartic acid, glycine, phenylalanine and serine could not be detected. Palmitoyl-CoA was not a substrate. 4. The enzyme is presumably responsible for the acetylation step of mercapturic acid synthesis; a more physiological function is not yet known, except that the enzyme may be involved in acetylation of those amino acids which occur in elevated amounts in some disorders of amino acid metabolism.  相似文献   

6.
1. After intraperitoneal administration of (35S)methionine (25 mg, 1.6 mCi/kg), detectable amount of radioactivity resulted associated to rat-liver DNA: the interaction reached the maximum value (about 18 pmol/mumol DNA P) by 2 h after administration of radioactive aminoacid. 2. The (35S)-binding was inhibited by the hepatocarcinogenic ethionine and dimethylnitrosamine, and was stimulated by the non-hepatocarcinogenic methylnitrosourea. 3. Hplc analysis of (35S)DNA enzymic digest evidenced two radioactive compounds, the UV behaviour of which is reported.  相似文献   

7.
Changes in the protein constituents in pea stem sections during root formation and its inhibition by kinetin and ethionine were studied. Only quantitative differences in the protein fractions separated on DEAE-cellulose column were noted. The formation of foci of meristematic cells in pericycle was accompanied by an increase in the amount of fraction “l”. This fraction disappeared rapidly in sections where root formation either did not occur (internodial sections without nodes) or was inhibited by ethionine (stem sections with basal and apical nodes). Incubation of stem sections in a kinetin solution for 16 hours after cutting of stems partially preserved fraction “l”. The increase in the amount of fraction “l” was one of the first metabolic changes in root-forming pea stem sections after cutting of stems.  相似文献   

8.
In vitro selection was carried out to obtain ethionine-resistant plants with increased contents of free methionine in the vegetative tissues of the forage legume Astragalus adsurgens Pall. Three-week-old cell colonies were derived from protoplasts mutagenized with N-methyl-N-nitrosoguanidine from embryogenic callus and were selected with 0.6mM ethionine. Four colony lines were isolated and their resistance to ethionine was 7–8 times that of the wild-type callus. No plant regeneration occurred on these colony lines in the differentiation medium containing ethionine. Only one colony line (R-1) regenerated plants through somatic embryogenesis in the absence of ethionine. Stem and leaf segments from the regenerated plants showed the same potential to produce callus in the presence of ethionine as in the absence of ethionine. The formed callus kept continuously growing in ethionine-containing medium. Free amino acid analysis revealed that colony line R-1, its regenerated plants and callus from the regenerated plants accumulated methionine at levels at 5–9 times higher than in wild-type. These results suggested that ethionine resistance and methionine over-accumulation were also expressed at plant level. Thus, the obtained resistant colony line that could regenerate plants with over-accumulation of methionine might provide an alternative approach to improve the nutritional quality of this forage.  相似文献   

9.
The administration of ethionine to female rats causes breakdown of hepatic polysomes. The fate of the mRNA molecules after polysome breakdown was investigated by measuring the amount of poly(A)-containing mRNA in membranous and non-membranous fractions obtained from the cytoplasm of ethionine-treated rat liver. The amount of poly(A)-containing mRNA in the membrane fraction of ethionine-treated liver was found to be the same as that of normal liver. When poly(A)-containing mRNAs from various fractions were translated in a wheat germ system and the products were isolated by immunoprecipitation, the albumin-specific mRNA was found exclusively in the membrane fraction of both normal and ethionine-treated livers. The membrane-bound mRNA in ethionine-treated liver, selectively labeled with [14C]orotate, was banded in CsCl gradient centrifugation at 1.42 g/ml which corresponds to the previously reported mRNA-containing ribonucleoprotein particles. From these results, we concluded that even after the polysome disaggregation by ethionine, most of the mRNA of membrane-bound polysomes remains attached to the endoplasmic reticulum membranes independently of ribosomes and the nascent polypeptide chains.  相似文献   

10.
The regulation of protein synthesis at the level of the ribosome was investigated using the model system of ethionine-induced inhibition of protein synthesis. The phosphorylation of ribosomal protein S6 was examined in vivo during ethionine intoxication and during the adenine-induced reversal of ethionine intoxication. The extent of phosphorylation of S6 correlated well with protein synthetic activity observed after ethionine, and ethionine followed by adenine treatments. No clear correlation was observed in the ethionine system between cyclic adenosine 3':5'-monophosphate concentration or the activity of ribosomal protein kinase and the phosphorylation of ribosomal protein S6. A role for a cyclic adenosine 3':5'-monophosphate-dependent ribosomal phosphoprotein phosphatase is postulated.  相似文献   

11.
The formation and transport of hepatic triglyceride fatty acids (TGFA) were studied after intravenous administration of palmitate-1-(14)C or palmitate-9,10-(3)H in rabbits pretreated with ethanol or ethionine. Administration of ethanol produced significant hypertriglyceridemia without consistent accumulation of hepatic fat. The isotopic studies suggest that plasma free fatty acids were the major precursors of TGFA in d < 1.006 lipoproteins and that fatty acids synthesized in the liver were not the source of the hypertriglyceridemia in the ethanol-treated animals. Administration of ethionine resulted in an increased concentration of TGFA in the liver, a decreased level of TGFA in d < 1.006 lipoproteins and a very low specific activity in this plasma fraction. These findings suggest that the development of fatty liver after administration of ethionine is in part accompanied by impaired release of TGFA from the liver.  相似文献   

12.
Treatment of rats with ethionine was found to cause severe impairment in the aminoacylation capacity of tRNA. This effect was only observed when assayed in injected oocytes, while invitro assays of aminoacylation failed to detect differences between normal tRNA and tRNA from ethionine treated animals. The effect of ethionine on the tRNA population was not uniform and differed for various amino acid specific tRNAs. Thus liver tRNA from ethionine treated rats showed a decreased capacity for phenylalanine aminoacylation, while no change was found in the case of leucine. On the other hand, the level of histidine aminoacylation was higher for tRNA from ethionine treated animals. An even more complex response was observed with methionine aminoacylation where tRNA from ethionine treated animals showed an initially faster rate than control tRNA. With more prolonged incubation periods, the methionyl-tRNA from ethionine treated animals was deacylated at an accelerated rate while the level of normal methionyl-tRNA remained almost constant.In addition to the aminoacylation reaction, the participation of aminoacyl-tRNA in protein synthesis was severely impaired. In this case, both the injected oocyte system and the cell-free wheat germ assay revealed these differences which were manifested with various mRNA and viral RNA preparations.  相似文献   

13.
L-ethionine has been found to inhibit uracil tRNA methylating enzymes in vitro under conditions where methylation of other tRNA bases is unaffected. No selective inhibitor for uracil tRNA methylases has been identified previously. 15 mM L-ethionine or 30 mM D,L-ethionine caused about 40% inhibition of tRNA methylation catalyzed by enzyme extracts from E. coli B or E. coli M3S (mixtures of methylases for uracil, guanine, cytosine, and adenine) but did not inhibit the activity of preparations from an E. coli mutant that lacks uracil tRNA methylase. Analysis of the 14CH3 bases in methyl-deficient E. coli tRNA after its in vitro methylation with E. coli B3 enzymes in the presence or absence of ethionine showed that ethionine inhibited 14CH3 transfer to uracil in tRNA, but did not diminish significantly the 14CH3 transfer to other tRNA bases. Under similar conditions 0.6 mM S-adenosylethionine and 0.2 mM ethylthioadenosine inhibited the overall tRNA base methylating activity of E. coli B preparations about 50% but neither of these ethionine metabolites preferentially inhibited uracil methylation. Ethionine was not competitive with S-adenosyl methionine. Uracil methylation was not inhibited by alanine, valine, or ethionine sulfoxide. It is suggested that the thymine deficiency that we found earlier in tRNA from ethionine-treated E. coli B cells, resulted from base specific inhibition by the amino acid, ethionine, of uracil tRNA methylation in vivo.  相似文献   

14.
The selection of clones resistant to methionine antagonists was undertaken on baby hamster Kidney cells grown in a methionine free medium, supplemented with homocystine, folic acid and hydroxo-B12. Clones resistant to 30 mug/ml ethionine were isolated after mutagenesis at an induced mutation frequency of 2.3 X 10(-5). An ethionine resistant clone, ETH 304, was extensively studied. The resistant cells excreted methionine in the culture medium and the intracellular pools of methionine and SAM were two to five times greater in the resistant clone than in the wild type cells. A semidominant ethionine resistant phenotype was observed in hybrids between the wild type and this resistant clone. Measurement of the specific activity of menadione reductase, B12 methyltransferase and ATP: L-methionine S-adenosyl-transferase in crude extracts of the wild type showed a repressive action of methionine on the level of the three enzymes. However, the ethionine resistant clone ETH 304 was not modified in this function. Menadione reductase is feedback-inhibited by SAM in wild type cells. The enzyme of the ethionine resistant clone was significantly less sensitive to SAM. When a comparison of thermal stability was made between the wild type and ethionine resistant clone enzymes, it was found that the thermal stability of the latter was modified. Three other ethionine resistant clones, independantly isolated, were similarly affected in the properties of menadione reductase. These results suggest that the pathway of re-use of S-adenosyl homocysteine, produced during methylation reactions, is highly regulated by methionine and SAM.  相似文献   

15.
Plectonema boryanum mutants that are resistant to ethionine are unable to incorporate ethionine into acid-precipitable material. Ethionine causes bleaching of chlorophyll in sensitive cells.  相似文献   

16.
In the present study, the nature, proportions and distribution of methylated amino acids in ribosomal proteins from Escherichia coli grown in the presence of ethionine and from mutant prm 1 were studied. The undermethylated ribosomes had been labeled by addition in vitro or in vivo of radioactive methyl groups from S-adenosylmethionine or from methionine. The following compounds were identified : N alpha-mono-, di- and trimethylalanines, N epsilon-mono-, di- and trimethyllysines, methylamine and N alpha-trimethylalanyllysine. Except for the latter compound and N-alpha-dimethylalanine, all other derivatives had been previously identified in the literature. It is shown that the dipeptide had been in the past mistaken for N epsilon-monomethyllysine, and arises through incomplete hydrolysis in 24 hrs of the N-terminal peptide bond of protein L11. The results of the present study are discussed in the light of previous work on ribosomal protein methylation by the authors and other workers in the field.  相似文献   

17.
In order to improve the methionine yield of the isolate B. heali, attempts were made to isolate mutants resistant to the methionine analogue DL-ethionine after mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine (NTG). The minimum inhibitory concentration (MIC) of ethionine for B. heali was found to be 2 mM. After mutagenesis and screening, five mutants resistant to 50 mM of ethionine were isolated. The yield of the best ethionine resistant mutant, B. heali Br EthR, was 13 mg/l of methionine medium under optimum cultivation conditions.  相似文献   

18.
Lysine transfer RNA2 is the major target for L-ethionine in the rat   总被引:1,自引:0,他引:1  
Ethionine, a hepatocarcinogen, ethylates macromolecules in vivo especially tRNA of rat liver. When rats were injected with L-[ethyl-3H]ethionine, the tRNA fraction of the liver was found to be labeled. One tRNA with the highest specific activity was purified and identified as lysine-tRNA2.  相似文献   

19.
Degradation of abnormal proteins in Bacillus megaterium and Saccharomyces cerevisiae in vivo was compared with that in cell-free extracts. Protein degradation in vivo, when the cells were labelled with 14C-leucine during growth in the presence of ethionine, was affected by the concentration of the analogue used. Proteins synthesized in the presence of 0.2–1 mM ethionine were degraded most rapidly in both organisms. The proteolytic enzyme system of yeast degraded the analogue-containing proteins in vitro faster than the normal proteins. This holds also for proteins synthesized in the presence of 5 mM ethionine, whose degradation in vivo was impaired. The proteolytic system of B. megaterium, on the other hand, was unable in vitro to differentiate between normal and abnormal proteins. Denatured proteins underwent preferential degradation over normal and ethionine-containing proteins.Participant in the UNESCO Postgraduate Course On Modern Problems in Biology and Microbial Technology.  相似文献   

20.
5-S-Ethyl-5-thio-D-ribose (ethylthioribose) exhibits antiprotozoal activity against Plasmodium falciparum, Giardia lamblia, and Ochromonas malhamensis, but is nontoxic to cultured human and murine bone marrow cells (Riscoe, M. K., Ferro, A. J., and Fitchen, J. H. (1988) Antimicrob. Agents Chemother. 32, 1904-1906). We propose the following mechanism to account for the observed selective toxicity of ethylthioribose. 1) The cytocidal action of ethylthioribose against protozoa is a result of its conversion to ethionine, a well-known cytotoxic agent. 2) This transformation occurs through the pathway which normally converts 5-S-methyl-5-thio-D-ribose (methylthioribose) to methionine. 3) Conversion of ethylthioribose to ethionine cannot occur in mammalian cells since these cells cannot phosphorylate methylthioribose (ethylthioribose), a first step in the pathway to methionine (ethionine). To test this hypothesis, [5-3H]ethylthioribose has been synthesized and its metabolism by cell-free extracts of Klebsiella pneumoniae and rat liver was examined. The pathway by which methylthioribose is converted to methionine in K. pneumoniae is well characterized. When supplemented with ATP and L-glutamine, the bacterial extract efficiently converted [5-3H]ethylthioribose to [3H]ethionine. By contrast, ethionine was not produced upon incubation of [5-3H]ethylthioribose, ATP, and L-glutamine with rat liver homogenate. The mammalian cell extract lacks a kinase activity capable of converting ethylthioribose to 1-phospho-5-S-ethyl-5-thio-alpha-D-ribofuranoside, an obligate intermediate in the biosynthesis of ethionine from ethylthioribose in K. pneumoniae. These results support our hypothesis and provide a basis for understanding the apparently selective toxicity of ethylthioribose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号