共查询到20条相似文献,搜索用时 15 毫秒
1.
Deletions in the N-terminal coding region of the v-sis gene: determination of the minimal transforming region. 总被引:7,自引:2,他引:7
下载免费PDF全文

The gene product of the v-sis gene is closely related to the B chain of platelet-derived growth factor (PDGF). However, v-sis also encodes additional amino acids at its N and C termini, which are not represented in the sequence data of PDGF. We have constructed a series of N-terminal deletion mutants in the v-sis gene to define the minimum region required for transformation. These mutants were assayed for biological activity by using retroviral expression vectors which donate a signal sequence, required for translocation across the rough endoplasmic reticulum, to the mutant gene product. The minimal transforming region of the v-sis gene product defined by this analysis has 15 residues missing at the N terminus when compared with the PDGF-B chain. There are only two residues separating the closest transforming and nontransforming gene products. Mutant gene products lacking both the basic dipeptide processing site and the N-linked glycosylation site were found to be biologically active, indicating the dispensability of those processing steps. These results delimit the minimal transforming region of the v-sis gene product to residues 127 through 214, a total of 21 residues smaller than the PDGF-B chain. 相似文献
2.
A basic peptide within the juxtamembrane region is required for EGF receptor dimerization 总被引:9,自引:0,他引:9
Aifa S Aydin J Nordvall G Lundström I Svensson SP Hermanson O 《Experimental cell research》2005,302(1):108-114
The epidermal growth factor receptor (EGFR) is fundamental for normal cell growth and organ development, but has also been implicated in various pathologies, notably tumors of epithelial origin. We have previously shown that the initial 13 amino acids (P13) within the intracellular juxtamembrane region (R645-R657) are involved in the interaction with calmodulin, thus indicating an important role for this region in EGFR function. Here we show that P13 is required for proper dimerization of the receptor. We expressed either the intracellular domain of EGFR (TKJM) or the intracellular domain lacking P13 (DeltaTKJM) in COS-7 cells that express endogenous EGFR. Only TKJM was immunoprecipitated with an antibody directed against the extracellular part of EGFR, and only TKJM was tyrosine phosphorylated by endogenous EGFR. Using SK-N-MC cells, which do not express endogenous EGFR, that were stably transfected with either wild-type EGFR or recombinant full-length EGFR lacking P13 demonstrated that P13 is required for appropriate receptor dimerization. Furthermore, mutant EGFR lacking P13 failed to be autophosphorylated. P13 is rich in basic amino acids and in silico modeling of the EGFR in conjunction with our results suggests a novel role for the juxtamembrane domain (JM) of EGFR in mediating intracellular dimerization and thus receptor kinase activation and function. 相似文献
3.
Li P Kuo WL Yousef M Rosner MR Tang WJ 《Biochemical and biophysical research communications》2006,343(4):1032-1037
Insulin degrading enzyme (IDE), a zinc metalloprotease, can specifically recognize and degrade insulin, as well as several amyloidogenic peptides such as amyloid beta (Abeta) and amylin. The disruption of IDE function in rodents leads to glucose intolerance and cerebral Abeta accumulation, hallmarks of type 2 diabetes and Alzheimer's disease, respectively. Using limited proteolysis, we found that human IDE (113kDa) can be subdivided into two roughly equal sized domains, IDE-N and IDE-C. Oligomerization plays a key role in the activity of IDE. Size-exclusion chromatography and sedimentation velocity experiments indicate that IDE-N is a monomer and IDE-C serves to oligomerize IDE-N. IDE-C alone does not have catalytic activity. It is IDE-N that contains the crucial catalytic residues, however IDE-N alone has only 2% of the catalytic activity of wild type IDE. By complexing IDE-C with IDE-N, the activity of IDE-N can be restored to approximately 30% that of wild type IDE. Fluorescence polarization assays using labeled insulin reveal that IDE-N has reduced affinity to insulin relative to wild type IDE. Together, our data reveal the modular nature of IDE. IDE-N is the catalytic domain and IDE-C facilitates substrate recognition as well as plays a key role in the oligomerization of IDE. 相似文献
4.
Cell surface expression of membrane-anchored v-sis gene products: glycosylation is not required for cell surface transport 总被引:6,自引:5,他引:6
下载免费PDF全文

《The Journal of cell biology》1986,103(6):2311-2322
The v-sis gene is able to transform cells by production of a growth factor that is structurally related to platelet-derived growth factor. This growth factor has been detected in the conditioned media of v-sis transformed cells, and is able to stimulate the autophosphorylation of the platelet-derived growth factor receptor. We have used the v-sis gene product to analyze the role of protein-encoded signals in cell surface transport. We constructed several gene fusions that encode transmembrane forms of the v-sis gene product. These membrane-anchored forms of the v-sis gene product are properly folded into a native structure, as indicated by their dimerization, glycosylation, and NH2- terminal proteolytic processing. Indirect immunofluorescence demonstrated that several of these membrane-anchored gene products are transported to the cell surface. Removal of the N-linked glycosylation site from the v-sis gene product did not prevent cell surface transport. Several of these mutant genes are able to induce focus formation in NIH3T3 cells, providing further evidence that the membrane- anchored proteins are properly folded. These results demonstrate that N- linked glycosylation is not required for the cell surface transport of a protein that is in a native, biologically active conformation. These results provide a correlation between cell surface expression of the membrane-anchored v-sis gene products and transformation. 相似文献
5.
The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. 总被引:1,自引:0,他引:1
下载免费PDF全文

The majority of mouse HSP90 exists as alpha-alpha and beta-beta homodimers. Truncation of the 15-kDa carboxy-terminal region of mouse HSP90 by digestion with the Ca(2+)-dependent protease m-calpain caused dissociation of the dimer. When expressed in a reticulocyte lysate, the full-length human HSP90 alpha formed a dimeric form. A plasmid harboring human HSP90 alpha cDNA was constructed so that the carboxy-terminal 49 amino acid residues were removed when translated in vitro. This carboxy-terminally truncated human HSP90 alpha was found to exist as a monomer. In contrast, loss of the 118 amino acid residues from the amino terminus of human HSP90 alpha did not affect its in vitro dimerization. Introduction of an expression plasmid harboring the full-length human HSP90 alpha complements the lethality caused by the double mutations of two HSP90-related genes, hsp82 and hsc82, in a haploid strain of Saccharomyces cerevisiae. The carboxy-terminally truncated human HSP90 alpha neither formed dimers in yeast cells nor rescued the lethal double mutant. 相似文献
6.
Shenolikar S Minkoff CM Steplock DA Evangelista C Liu M Weinman EJ 《FEBS letters》2001,489(2-3):233-236
NHERF, a 55 kDa PDZ-containing protein, binds receptors and ion transporters to mediate signal transduction at the plasma membrane. Recombinant NHERF demonstrated an apparent size of 150 kDa on gel filtration, which could be reduced to approximately 55 kDa by protein denaturing agents, consistent with the formation of NHERF dimers. Biosensor studies established the time- and concentration-dependent dimerization of NHERF. Overlays of recombinant NHERF fragments suggested that NHERF dimerization was principally mediated by the N-terminal PDZ-I domain. In PS120 cells, reversible protein phosphorylation modulated NHERF dimerization and suggested a role for NHERF dimers in hormonal signaling. 相似文献
7.
8.
Lateral dimerization is required for the homophilic binding activity of C-cadherin 总被引:9,自引:8,他引:9
下载免费PDF全文

《The Journal of cell biology》1996,135(2):487-496
Regulation of cadherin-mediated adhesion can occur rapidly at the cell surface. To understand the mechanism underlying cadherin regulation, it is essential to elucidate the homophilic binding mechanism that underlies all cadherin-mediated functions. Therefore, we have investigated the structural and functional properties of the extracellular segment of Xenopus C-cadherin using a purified, recombinant protein (CEC 1-5). CEC 1-5 supported adhesion of CHO cells expressing C-cadherin. The extracellular segment was also capable of mediating aggregation of microspheres. Chemical cross-linking and gel filtration revealed that CEC 1-5 formed dimers in the presence as well as absence of calcium. Analysis of the functional activity of purified dimers and monomers demonstrated that dimers retained substantially greater homophilic binding activity than monomers. These results demonstrate that lateral dimerization is necessary for homophilic binding between cadherin extracellular segments and suggest multiple potential mechanisms for the regulation of cadherin activity. Since the extracellular segment alone possessed significant homophilic binding activity, the adhesive activity of the extracellular segment in a cellular context was analyzed. The adhesion of CHO cells expressing a truncated version of C-cadherin lacking the cytoplasmic tail was compared to cells expressing the wild-type C-cadherin using a laminar flow assay on substrates coated with CEC 1-5. CHO cells expressing the truncated C-cadherin were able to attach to CEC 1-5 and to resist detachment by low shear forces, demonstrating that tailless C-cadherin can mediate basic, weak adhesion of CHO cells. However, cells expressing the truncated C-cadherin did not exhibit the complete adhesive activity of cells expressing wild-type C-cadherin. Cells expressing wild-type C-cadherin remained attached to CEC 1-5 at high shear forces, while cells expressing the tailless C-cadherin did not adhere well at high shear forces. These results suggest that there may be two states of cadherin-mediated adhesion. The first, relatively weak state can be mediated through interactions between the extracellular segments alone. The second strong adhesive state is critically dependent on the cytoplasmic tail. 相似文献
9.
The insulin receptor is a transmembrane protein dimer composed of two alphabeta monomers held together by inter-alpha-chain disulfide bonds. In a previous report we described a monomeric insulin receptor obtained by replacing Cys-524, -682, -683, and -685 with serine. The membrane-bound monomeric insulin receptors could be cross-linked to dimers in the presence of insulin, indicating that although covalent interactions had been abolished, noncovalent dimerization could still occur in the membrane. To eliminate noncovalent dimerization, we replaced all or some of Cys-524, -682, -683, and -685 with arginine or aspartic acid with the expectation that the electrostatic repulsion at these contact sites would prevent noncovalent dimerization. The results indicate that mutant insulin receptors that are able to form covalent dimers are expressed at the wild type level; mutants that can form noncovalent dimers are expressed at half the level of the wild type receptor, whereas insulin receptor mutants that cannot dimerize are expressed at less than 10% of the wild type level. To elucidate the mechanism of the decrease in expression of the mutant insulin receptors, we examined their subcellular localization and biosynthesis. The results suggest that the extent of expression of these mutant receptors is related to their ability to form covalent or noncovalent dimers at the proreceptor stage. 相似文献
10.
To determine whether small or middle T-antigen (or both) of polyoma virus is required for transformation, we constructed mutants of recombinant plasmids which bear the viral oncogene and measured the capacity of these mutants to transform rat cells in culture. Insertion and deletion mutations in sequences encoding small and middle T-antigens (79.7, 81.3, and 82.9 map units) rendered the DNA incapable of causing transformation by the focus assay. Similar mutations in sequences that encoded middle but not small T-antigen (89.7, 92.1, and 96.5 map units) generally abolished the transforming activity of the DNA. However, two mutants (pPdl1-4 and PPd12-7) that carried deletions at 92.1 map units retained the capacity to transform cells; pPdl1-4 did so at frequencies equal to those of the parental plasmid, whereas pPdl2-7 transformed at 10% the frequency of its antecedent. From these studies we conclude that small T-antigen alone is insufficient to cause transformation and that middle T-antigen is required for transformation, either in combination with small T-antigen or by itself. 相似文献
11.
Pellon-Maison M Coleman RA Gonzalez-Baró MR 《Archives of biochemistry and biophysics》2006,450(2):157-166
Glycerol phosphate acyltransferase (GPAT) catalyzes the formation of 1-acyl-sn-glycerol-3-phosphate from glycerol-3-phosphate and long chain fatty acyl-CoA substrates. We previously determined the topography of the mitochondrial GPAT1 isoform (mtGPAT1, 828 amino acids). mtGPAT1 has two transmembrane domains (TMDs) (aa 472-493 and aa 576-592) with both the N- and C-termini facing the cytosol and a loop (aa 494-575) facing the intermembrane space. Alignment of amino acid sequences from mtGPAT1 and other acyltransferases and site directed mutagenesis studies have demonstrated that the active site of the enzyme resides in the N-terminal domain of the protein. In this study, we sequentially truncated the C-terminal domain and characterized the properties of the resulting mutants expressed in CHO cells. Although the mutants were overexpressed, none of them conferred GPAT activity. The loss of activity was not due to the miss-targeting of the proteins since immunofluorescence experiments demonstrated their mitochondrial localization. Instead, chemical crosslinking and protein cleavage studies demonstrated that the N- and C-termini of the protein interact. These results suggest that the C-terminal domain is necessary for mtGPAT1 activity, and probably contributes to catalysis or substrate binding. 相似文献
12.
Shibayama S Shibata-Seita R Miura K Kirino Y Takishima K 《The Journal of biological chemistry》2002,277(40):37777-37782
Extracellular signal-regulated kinase 2 (ERK2) is located in the cytoplasm of resting cells and translocates into the nucleus upon extracellular stimuli by active transport of a dimer. Passive transport of an ERK2 monomer through the nuclear pore is also reported to coexist. We attempted to characterize the cytoplasmic retention and nuclear translocation of fusion proteins between deletion and site-directed mutants of ERK2 and green fluorescent protein (GFP). The overexpressed ERK2-GFP fusion protein is usually localized to both the cytoplasm and the nucleus unless a cytoplasmic anchoring protein is coexpressed. Deletion of 45 residues, but not 43 residues, from the C terminus of ERK2 prevented the nuclear distribution of the ERK2-GFP fusion protein. Substitution of a part of residues 299-313 to alanine residues also prevented the nuclear distribution of the ERK2-GFP fusion protein without abrogation of its nuclear active transport. These observations may indicate that the passive diffusion of ERK2 into the nucleus is not simple diffusion but includes a specific interaction process between residues 299-313 and the nuclear pore complex and that this interaction is not required for the active transport. We also showed that substitution of Tyr(314) to alanine residue abrogated the cytoplasmic retention of the ERK2-GFP fusion protein by PTP-SL but not by MEK1. 相似文献
13.
14.
A region near the C-terminal end of Escherichia coli DNA helicase II is required for single-stranded DNA binding
下载免费PDF全文

The role of the C terminus of Escherichia coli DNA helicase II (UvrD), a region outside the conserved helicase motifs, was investigated by using three mutants: UvrDDelta107C (deletion of the last 107 C-terminal amino acids), UvrDDelta102C, and UvrDDelta40C. This region, which lacks sequence similarity with other helicases, may function to tailor UvrD for its specific in vivo roles. Genetic complementation assays demonstrated that mutant proteins UvrDDelta107C and UvrDDelta102C failed to substitute for the wild-type protein in methyl-directed mismatch repair and nucleotide excision repair. UvrDDelta40C protein fully complemented the loss of helicase II in both repair pathways. UvrDDelta102C and UvrDDelta40C were purified to apparent homogeneity and characterized biochemically. UvrDDelta102C was unable to bind single-stranded DNA and exhibited a greatly reduced single-stranded DNA-stimulated ATPase activity in comparison to the wild-type protein (kcat = 0.01% of the wild-type level). UvrDDelta40C was slightly defective for DNA binding and was essentially indistinguishable from wild-type UvrD when single-stranded DNA-stimulated ATP hydrolysis and helicase activities were measured. These results suggest a role for a region near the C terminus of helicase II in binding to single-stranded DNA. 相似文献
15.
A M Borodin A V Danilkovich I P Chernov T L Azhikina V M Rostapshov 《Bioorganicheskaia khimiia》1988,14(9):1179-1182
The Sanger method was modified and the primary structure of the SalI-C fragment of the Pseudomonas putida rpoBC operon was elucidated. 相似文献
16.
Nakano Y Kohno T Hibi T Kohno S Baba A Mikoshiba K Nakajima K Hattori M 《The Journal of biological chemistry》2007,282(28):20544-20552
Reelin is a very large secreted glycoprotein essential for correct development of the mammalian brain. It is also implicated in higher functions and diseases of human brain. However, whether or not secretion of Reelin is regulated and how Reelin transmits signals remain largely unknown. Reelin protein is composed of an N-terminal F-spondin-like domain, Reelin repeats, and a short and highly basic C-terminal region (CTR). The primary sequence of CTR is almost completely conserved among vertebrates except fishes, indicating its importance. A prevailing idea regarding the function of CTR is that it is required for the secretion of Reelin, although this remains unproven. Here we aimed to clarify the function of Reelin CTR. Neither deleting most of CTR nor replacing CTR with unrelated amino acids affected secretion efficiency, indicating that CTR is not absolutely required for the secretion of Reelin. We also found that Reelin mutants without CTR were less potent in activating the downstream signaling in cortical neurons. Although these mutants were able to bind to the Reelin receptor ectodomain as efficiently as wild-type Reelin, quite interestingly, their ability to bind to the isolated cell membrane bearing Reelin receptors or receptor-expressing cells (including cortical neurons) was much weaker than that of wild-type Reelin. Therefore, it is concluded that the CTR of Reelin is not essential for its secretion but is required for efficient activation of downstream signaling events, presumably via binding to an unidentified "co-receptor" molecule(s) on the cell membrane. 相似文献
17.
18.
Requirement for the C-terminal region of middle T-antigen in cellular transformation by polyoma virus 总被引:9,自引:1,他引:9
下载免费PDF全文

Deletions of polyoma virus DNA around the region that codes for the C-terminus of the viral middle T-antigen were created using a transforming fragment (BamH I/EcoR I) of viral DNA cloned in the plasmid vector pAT153. These species were recloned and assayed for their ability to transform Rat-1 cells in culture. Our results showed that whereas the DNA sequence between the presumed translational termination codon for the viral middle T-antigen and the single viral EcoR I site could be removed with no apparent effect on transformation, the removal of the termination codon itself or any amino acid coding sequences of this protein caused a drastic decrease in the transforming ability of the DNA. Transfection of Rat-1 cells with plasmids that contained viral DNA with deletions which corresponded to the last fourteen or more amino acids of the middle T-antigen never gave rise to cellular transformation. 相似文献
19.
Cell surface expression of v-fms-coded glycoproteins is required for transformation. 总被引:22,自引:21,他引:22
下载免费PDF全文

The viral oncogene v-fms encodes a transforming glycoprotein with in vitro tyrosine-specific protein kinase activity. Although most v-fms-coded molecules remain internally sequestered in transformed cells, a minor population of molecules is transported to the cell surface. An engineered deletion mutant lacking 348 base pairs of the 3.0-kilobase-pair v-fms gene encoded a polypeptide that was 15 kilodaltons smaller than the wild-type v-fms gene product. The in-frame deletion of 116 amino acids was adjacent to the transmembrane anchor peptide located near the middle of the predicted protein sequence and 432 amino acids from the carboxyl terminus. The mutant polypeptide acquired N-linked oligosaccharide chains, was proteolytically processed in a manner similar to the wild-type glycoprotein, and exhibited an associated tyrosine-specific protein kinase activity in vitro. However, the N-linked oligosaccharides of the mutant glycoprotein were not processed to complex carbohydrate chains, and the glycoprotein was not detected at the cell surface. Cells expressing high levels of the mutant glycoprotein did not undergo morphological transformation and did not form colonies in semisolid medium. The transforming activity of the v-fms gene product therefore appears to be mediated through target molecules on the plasma membrane. 相似文献
20.
Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region
下载免费PDF全文

VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. 相似文献