首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have prepared by semisynthetic methods a two-chain insulin/insulin-like growth factor I hybrid that contains a synthetic peptide related to residues 22-41 of insulin-like growth factor I linked via peptide bond to ArgB22 of des-octapeptide-(B23-B30)-insulin and have applied the analog to the analysis of ligand interactions with the type I insulin-like growth factor and insulin receptors of placental plasma membranes. Relative potencies for the inhibition of 125I-labeled insulin-like growth factor I binding to type I insulin-like growth factor receptors were 1.0:0.20:0.003 for insulin-like growth factor I, the hybrid analog, and insulin, respectively. Corresponding relative potencies for the inhibition of 125I-labeled insulin binding to insulin receptors were 0.007:0.28:1 for the three respective peptides. Additional studies identified that the hybrid analog interacts with only one of two populations of insulin-like growth factor I binding sites on placental plasma membranes and permitted the analysis of insulin-like growth factor I interactions with the separate populations of binding sites. We conclude that (a) des-octapeptide-(B23-B30)-insulin can serve well as a scaffold to support structural elements of insulin-like growth factor I and insulin necessary for high affinity binding to their receptors, (b) major aspects of structure relevant to the conferral of receptor binding affinity lie in the COOH-terminal region of the insulin B chain and in the COOH-terminal region of the insulin-like growth factor I B domain and in its C domain, and (c) the evolution of ligand-receptor specificity in these systems has relied as much on restricting interactions (through the selective introduction of negative structural elements) as it has on enhancing interactions (through the introduction of affinity conferring elements of structure).  相似文献   

2.
The erythroleukemia cell line K562 was previously shown to have specific binding sites for insulin but not for insulin-like growth factor I (IGF-I). In this study the presence of specific receptors for insulin-like growth factor II (IGFqI) is established. Scatchard analysis of the competition curve for IGF-II disclosed a non-cooperative binding kinetic with a calculated affinity constant of 2.4×108 M–1 and a receptor number of 4.8×l04 sites/cell. IGF-I displayed 10% crossreactivity over the IGF-II receptor but insulin did not crossreact at all. Instead insulin, present in high concentrations, enhanced the binding of IGF-II. The presence of IGF II but not IGF-I receptors makes t h e K562 cell line suitable for studying properties of the type-2 receptor.  相似文献   

3.
The expression of insulin-like growth factor (IGF) receptors at the cell surface and the changes in IGF responsiveness during differentiation were studied in the L6 skeletal muscle cell line. Throughout the entire developmental sequence, distinct receptors for IGF I and IGF II that differed in structure and peptide specificity could be demonstrated. During differentiation, both 125I-IGF I and 125I-IGF II binding to the L6 cells decreased as a result of a 3-4-fold reduction in receptor number, whereas 125I-insulin binding increased. Under nonreducing conditions, disuccinimidyl suberate cross-linked 125I-IGF I and 125I-IGF II to two receptor complexes with apparent Mr greater than 300,000 (type I) and 220,000 (type II). Under reducing conditions, the apparent molecular weight of the type I receptor changed to Mr 130,000 (distinct from the 120,000 insulin receptor) and the type II receptor changed to 250,000. IGF I and IGF II both stimulated 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake in the L6 cells with a potency close to that of insulin, apparently through interaction with their own receptors. The stimulatory effects of IGF II correlated with its affinity for the type II but not the type I IGF receptor, as measured by inhibition of affinity labeling, whereas the effects of IGF I correlated with its ability to inhibit labeling of the type I receptor. In spite of the decrease in type I and type II receptor number, stimulation of 2-deoxy-glucose and alpha-aminoisobutyric acid uptake by the two IGFs increased during differentiation.  相似文献   

4.
The murine non-fusing muscle cell line contains distinct receptors for insulin and insulin-like growth factors. Pretreatment of myocytes with insulin for 20 h at 37 degrees C inhibits the binding of [125I]iodoinsulin by 60% without affecting the binding of [125I]iodoinsulin-like growth factor I. The ED50 values for down-regulation of the insulin and insulin-like growth factor receptor by their respective ligands are 1 nM and 3 nM, respectively. Insulin, (Thr-59)-insulin-like growth factor I and multiplication-stimulating activity stimulate 2-[3H]deoxyglucose transport in myocytes with ED50 values of 5 nM, 5.6 nM and 33 nM, respectively. In order to determine whether (Thr-59)-insulin-like growth factor I stimulates 2-[3H]deoxyglucose transport in myocytes via its own receptor or the insulin receptor, we determined the activity of these peptides after down-regulation of the insulin receptor. The rate of 2-[3H]deoxyglucose transport in myocytes pretreated with insulin (5 nM) is elevated but returns to control levels by 1 h after the washout of insulin. The dose-response curve for insulin-stimulated 2-[3H]deoxyglucose transport is shifted to the right (ED50 greater than 100 nM) immediately after insulin washout but is normal by 1 h after insulin washout. In contrast, the dose-response curve for (Thr-59)-insulin-like growth factor I is unchanged in insulin-pretreated cells immediately after insulin washout. These data show that (Thr-59)-insulin-like growth factor I stimulates 2-[3H]deoxyglucose transport in myocytes by acting through an insulin-like growth factor receptor and not through the insulin receptor. Since multiplication-stimulating activity is 6-fold less active than (Thr-59)-insulin-like growth factor, they both may be acting through a type 1 insulin-like growth factor receptor.  相似文献   

5.
The cells of the IM-9 human lymphocyte-derived line contain a sub-population of insulin-binding sites whose immunological and hormone-binding characteristics closely resemble those of the atypical insulin-binding sites of human placenta. These binding sites, which have moderately high affinity for multiplication-stimulating activity [MSA, the rat homologue of insulin-like growth factor (IGF) II] and IGF-I, are identified on IM-9 cells by 125I-MSA binding. They account for approximately 30% of the total insulin-receptor population, and do not react with a monoclonal antibody to the type I IGF receptor (alpha IR-3). The relative concentrations of unlabelled insulin, MSA and IGF-I required to displace 50% of 125I-MSA from these binding sites (1:4.7:29 respectively) are maintained for cells, particulate membranes, Triton-solubilized membranes precipitated either by poly(ethylene glycol) or a polyclonal antibody (B-10) to the insulin receptor, and receptors purified by insulin affinity chromatography. Because the atypical insulin/MSA-binding sites outnumber the type I IGF receptors in IM-9 cells by approximately 10-fold, they also compete with the latter receptors for 125I-IGF-I binding. Thus 125I-IGF-I binding to IM-9 cells is inhibited by moderately low concentrations of insulin (relative potency ratios for insulin compared with IGF-I are approx. 1/14 to 1/4) and is partially displaced (65-80%) by alpha IR-3. When type I IGF receptors are blocked by alpha IR-3 or removed by B-10 immunoprecipitation or insulin affinity chromatography, the hormone-displacement patterns for 125I-IGF-I binding resemble those of the atypical insulin/MSA-binding sites.  相似文献   

6.
The immunoglobulin fraction prepared from the serum of a rabbit immunized with purified type II insulin-like growth factor (IGF) receptor from rat placenta was tested for its specificity in inhibiting receptor binding of 125I-IGF II and for its ability to modulate IGF II action on rat hepatoma H-35 cells. The specific binding of 125I-IGF II to plasma membrane preparations from several rat cell types and tissues was inhibited by the anti-IGF II receptor Ig. Affinity cross-linking of 125I-IGF II to the Mr = 250,000 type II IGF receptor structure in rat liver membranes was blocked by the anti-receptor Ig, while no effect on affinity labeling of insulin receptor with 125I-insulin or IGF I receptor with 125I-IGF I or 125I-IGF II was observed. The specific inhibition of ligand binding to the IGF II receptor by anti-receptor Ig was species-specific such that mouse receptor was less potently inhibited and human receptor was unaffected. Rat hepatoma H-35 cells contain insulin and IGF II receptor, but not IGF I receptor, and respond half-maximally to insulin at 10(-10) M and to IGF II at higher concentrations with increased cell proliferation (Massague, J., Blinderman, L.A., and Czech, M.P. (1982) J. Biol. Chem. 257, 13958-13963). Addition of anti-IGF II receptor Ig to intact H-35 cells inhibited the specific binding of 125I-IGF II to the cells by 70-90%, but had no detectable effect on 125I-insulin binding. Significantly, under identical conditions anti-IGF II receptor Ig was without effect on IGF II action on DNA synthesis at both submaximal and maximal concentrations of IGF II. This finding and the higher concentrations of IGF II required for growth promotion in comparison to insulin strongly suggest that the Mr = 250,000 receptor structure for IGF II is not involved in mediating this physiological response. Rather, at least in H-35 cells, the insulin receptor appears to mediate the effects of IGF II on cell growth. Consistent with this interpretation, anti-insulin receptor Ig but not anti-IGF II receptor Ig mimicked the ability of growth factors to stimulate DNA synthesis in H-35 cells. We conclude that the IGF II receptor may not play a role in transmembrane signaling, but rather serves some other physiological function.  相似文献   

7.
Two somatomedin-like peptides were extracted from Cohn fraction IV of human plasma and brought to homogeneity: one focused at pH 7.8 and the other at pH less than 5.6. Each consisted of two peptide chains interlinked by disulphide bonds. The basic peptide was identical to insulin-like growth factor I (IGF-I) and had a single cleavage in the C-domain before Arg37 [IGF-I(Arg36cl)]. The acid peptide showed identity with IGF-II, with a cleavage in the B-domain before Arg30 [IGF-II(Ser29cl)]. The effects of these cleavages on the characteristics of binding to type I and type II receptor sites, to binding proteins and to antibodies was studied. Binding of IGF-I(Arg36cl) to antibodies directed against the B-domain or against the AD-domain of IGF-I was the same as IGF-I binding. Thus the cleavage does not influence these antigenic sites. In contrast, binding of IGF-I(Arg36cl) to the type I receptor on human and bovine placental cell membranes was markedly decreased compared with IGF-I binding. Binding to the insulin receptor on human placental cell membranes was slightly diminished, whereas the interaction with specific type II receptors on bovine placental cell membranes was unaffected. There was only a minor influence of the cleavage on the region involved in binding to binding proteins. The cleavage in IGF-II(Ser29cl) diminished binding to antibodies directed against the C-domain of IGF-II, compared with binding of IGF-II itself. Binding to receptors (type I and type II) was changed less profoundly. With 125I-labelled IGF-II(Ser29cl), less insulin was needed in order to obtain 50% displacement of the tracer compared with displacement of 125I-labelled IGF-II. The cleaved form of IGF-II probably has a greater affinity towards the common receptor population than does native IGF-II. Binding to binding proteins was not affected by the cleavage in IGF-II.  相似文献   

8.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. The mechanism underlying the increased proliferation could involve the induction of components of the insulin-like growth factor signal transduction pathway by estrogen. In this study we have examined the regulation of the expression of insulin receptor substrate-1, a major intracellular substrate of the type I insulin-like growth factor receptor tyrosine kinase. Estradiol increased insulin receptor substrate-1 mRNA and protein levels at concentrations consistent with a mechanism involving the estrogen receptor. Insulin receptor substrate-1 was not induced significantly by the antiestrogens tamoxifen and ICI 182,780, but they inhibited the induction of insulin receptor substrate-1 by estradiol. Analysis of tyrosine-phosphorylated insulin receptor substrate-1 showed that the highest levels were found in cells stimulated by estradiol and insulin-like growth factor-I, whereas low levels were found in the absence of estradiol irrespective of whether type I insulin-like growth factor ligands were present. Insulin receptor substrate-2, -3, and -4 were not induced by estradiol. These results suggest that estrogens and antiestrogens may regulate cell proliferation by controlling insulin receptor substrate-1 expression, thereby amplifying or attenuating signaling through the insulin-like growth factor signal transduction pathway.  相似文献   

9.
Abstract

The cells of the human IM-9 lymphocyte-derived line contain a sub-population of insulin binding sites which differ from classical insulin binding sites in their higher binding affinity for insulin-like growth factor II (IGF-II) and insulin-like growth factor I (IGF-I). These atypical insulin binding sites are identified on IM-9 cells by [125I]IGF-II binding.

To determine whether the atypical and classical insulin receptors of IM-9 cells were subject to different modes of in vivo regulation, we treated IM-9 cells with agents known to alter the surface expression of insulin receptors - insulin, dexamethasone and monensin. We then measured insulin and IGF-II binding to the surface of the washed cells.

Pretreatment of IM-9 cells with 1 μM insulin for 20 h at 37°C induced a 44–48% decrease in the number of high affinity insulin binding sites, but no change in the number of IGF-II binding sites. In contrast, the surface expression of both insulin and IGF-II binding sites (classical and atypical insulin receptors) increased 1.3 to 1.7-fold after treatment with dexamethasone (200 nM) and decreased 30 to 45% after monensin (1 μM). These results suggest that atypical and classical insulin receptors are differentially susceptible to down-regulation by insulin.  相似文献   

10.
A modified insulin, in which the A chain moiety has been extended at the C-terminus with the “D region” of the insulin-like growth factor II, has been synthesized essentially by the procedures employed in this laboratory for the synthesis of insulin and analogues. This hybrid molecule displayed reduced insulin-like activities, 34.5% receptor binding, and 40.4% stimulation of lipogenesis relative to natural insulin. These findings suggest that the extension sequence (“D region”) attached at the C-terminus of the A chain may partially cover the putative receptor binding region of insulin, in support of speculations based on computer-generated models. These same models indicate that the extension peptide may interfere with one of the two regions implicated in insulin antibody recognition. In this regard, radioimmunoassay of the hybrid revealed potency even more reduced than biological activity: 18% relative to insulin. Growth factor assays of the hybrid (this laboratory, unpublished data) suggest that the “D region” of insulin-like growth factor II is not in itself the determinant of growth-promoting activity.  相似文献   

11.
Within the class of insulin and insulin-like growth factor receptors, detailed information about the molecular recognition event at the hormone-receptor interface is limited by the absence of suitable co-crystals. We describe the use of a biologically active insulin derivative labeled with the NBD fluorophore (B29NBD-insulin) to characterize the mechanism of reversible 1:1 complex formation with a fragment of the insulin receptor ectodomain. The accompanying 40 % increase in the fluorescence quantum yield of the label provides the basis for a dynamic study of the hormone-receptor binding event. Stopped-flow fluorescence experiments show that the kinetics of complex formation are biphasic comprising a bimolecular binding event followed by a conformational change. Displacement with excess unlabeled insulin gave monophasic kinetics of dissociation. The rate data are rationalized in terms of available experiments on mutant receptors and the X-ray structure of a non-binding fragment of the receptor of the homologous insulin-like growth factor (IGF-1).  相似文献   

12.
To investigate the role of insulin-like growth factor II in the control of DNA synthesis in human fibroblasts, dose-response curves for insulin-like growth factor I and II stimulation of [3H]thymidine incorporation were compared in the absence and presence of alpha IR-3, a highly specific monoclonal antibody directed against the type I insulin-like growth factor receptor. Specific binding of [125I]insulin-like growth factor I to human fibroblast monolayer cultures was inhibited 60-70% in the presence of alpha IR-3. alpha IR-3 had no effect on [125I]insulin-like growth factor II binding to human fibroblasts. However, alpha IR-3 inhibited both insulin-like growth factor I and II stimulated [3H]thymidine incorporation. These data indicate that the type II insulin-like growth factor receptor does not function as a transducer of insulin-like growth factor II's mitogenic effect in human fibroblasts.  相似文献   

13.
Insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) are both from the same subgroup of receptor tyrosine kinases that exist as covalently bound receptor dimers at the cell surface. For both IR and IGF-IR, the most described forms are homodimer receptors. However, hybrid receptors consisting of one-half IR and one-half IGF-IR are also present at the cell surface. Two splice variants of IR are expressed that enable formation of two isoforms of the IGF-IR/IR hybrid receptor. In this study, these two splice variants of hybrid receptors were studied with respect to binding affinities of insulin, insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II). Unlike previously published data, in which semipurified receptors have been studied, we found that the two hybrid receptor splice variants had similar binding characteristics with respect to insulin, IGF-I, and IGF-II binding. We studied both semipurified and purified hybrid receptors. In all cases we found that IGF-I had at least 50-fold higher affinity than insulin, irrespective of the splice variant. The binding characteristics of insulin and IGF-I to both splice variants of the hybrid receptors were similar to classical homodimer IGF-IR.  相似文献   

14.
Summary Insulin is able to stimulate a growth response in a variety of different cell types. However, the role of the insulin receptor in mediating this response is not clear. Indeed, it has been reported that the ability of insulin to stimulate a growth response is a result of its interaction with other growth factor receptors rather than the insulin receptor.We have previously reported that the H-35 hepatoma cell line responded to physiological concentrations of insulin as a growth factor and that the relative potency of proinsulin suggested that this response was mediated by the insulin receptor. In this report, two experimental approaches are used to demonstrate the involvement of the insulin receptor in mediating the growth response. Two different preparations of antibody to the insulin receptor are found to be capable of stimulating this response. In addition, the human insulin-like growth factors (IGF-I and II) show very low cross-reactivity with the insulin receptor and are significantly less potent than insulin in stimulating the growth response.Abbrevations IGF insulin-like growth factor - MSA multiplication stimulating activity - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   

15.
Hyperandrogenism observed in a variety of hyperinsulinemic states is thought to be due to an effect of insulin mediated through the type I insulin-like growth factor (IGF) receptors. These receptors, however, have not yet been demonstrated in normal human ovarian cells capable of androgen production. We now report the presence of type I IGF receptors in membrane preparations of human ovarian stroma. The ovarian stromal tissue was obtained from women undergoing indicated oophorectomy. Stromal plasma membranes were prepared. Specific 125I-IGF-I binding was 6.6 +/- 0.2%/100 micrograms protein. The affinity constant estimated by Scatchard analysis was 4.6 X 10(-9) M. 50% inhibition of 125I-IGF-1 binding was observed at 5 ng/ml of IGF-1. Specificity of the 125I-IGF-I-binding sites was confirmed by analogue specificity studies and in experiments utilizing monoclonal antibody to the IGF-I receptor, alpha-IR-3. IGF-II and insulin competed with 125I-IGF-I for the binding sites, but with an affinity significantly lower than that of IGF-I: 50% inhibition was observed at approximately 60 ng/ml of IGF-II or insulin. alpha-IR-3, a monoclonal antibody with high specificity for the type I IGF receptor, effectively inhibited 125I-IGF-I binding in a dose-dependent manner, confirming that the 125I-IGF-I binding was indeed to the type I IGF receptor. We conclude that type I IGF receptors are present in human ovarian stroma. These receptors may mediate effects of insulin on the ovary in hyperinsulinemic insulin-resistant states.  相似文献   

16.
Insulin-like growth factor II (IGF-II) is a peptide growth factor that is homologous to both insulin-like growth factor I (IGF-I) and insulin and plays an important role in embryonic development and carcinogenesis. IGF-II is believed to mediate its cellular signaling via the transmembrane tyrosine kinase type 1 insulin-like growth factor receptor (IGF-I-R), which is also the receptor for IGF-I. Earlier studies with both cultured cells and transgenic mice, however, have suggested that in the embryo the insulin receptor (IR) may also be a receptor for IGF-II. In most cells and tissues, IR binds IGF-II with relatively low affinity. The IR is expressed in two isoforms (IR-A and IR-B) differing by 12 amino acids due to the alternative splicing of exon 11. In the present study we found that IR-A but not IR-B bound IGF-II with an affinity close to that of insulin. Moreover, IGF-II bound to IR-A with an affinity equal to that of IGF-II binding to the IGF-I-R. Activation of IR-A by insulin led primarily to metabolic effects, whereas activation of IR-A by IGF-II led primarily to mitogenic effects. These differences in the biological effects of IR-A when activated by either IGF-II or insulin were associated with differential recruitment and activation of intracellular substrates. IR-A was preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney and had a relatively increased proportion of isoform A. IR-A expression was also increased in several tumors including those of the breast and colon. These data indicate, therefore, that there are two receptors for IGF-II, both IGF-I-R and IR-A. Further, they suggest that interaction of IGF-II with IR-A may play a role both in fetal growth and cancer biology.  相似文献   

17.
Recently, the sequence of the human receptor for insulin-like growth factor II (IGF-II) was found to be 80% identical [Morgan et al., (1987) Nature 329, 301-307] to the sequence of a partial clone of the bovine cation-independent mannose-6-phosphate receptor [Lobel et al., (1987) Proc. Natl. Acad. Sci. USA 84, 2233-2237]. In the present study, the purified receptor for insulin-like growth factor II (IGF-II) was found to react with two different polyclonal antibodies to the purified mannose-6-phosphate receptor. Moreover, mannose-6-phosphate was found to stimulate the binding of labeled IGF-II to the IGF-II receptor by two-fold. This effect had the same specificity and affinity as the reported binding of mannose-6-phosphate to its receptor; mannose-1-phosphate and mannose had no effect on the binding of labeled IGF-II to its receptor, and the half-maximally effective concentration of mannose-6-phosphate was 0.3 mM. Also, mannose-6-phosphate did not affect labeled IGF-II binding to the insulin receptor. These results support the hypothesis that a single protein of Mr-250,000 binds both IGF-II and mannose-6-phosphate. Furthermore, they indicate that mannose-6-phosphate can modulate the interaction of IGF-II to its receptor.  相似文献   

18.
Exposure to hyperglycemia in utero impairs rat nephrogenesis. The effect of maternal diabetes on insulin-like growth factors and their receptors in the fetal kidney is associated with an increase in both mRNA and protein of the insulin-like growth factor II/mannose 6-phosphate receptor. However, this receptor has never been localized in the fetal kidney. The spatial and temporal distribution of the three insulin-like growth factor receptors (insulin-like growth factor I receptor, insulin-like growth factor II/mannose 6-phosphate receptor and insulin receptor) in rat metanephros during both normal and streptozotocin-induced diabetic renal development was investigated using in situ hybridization and immunohistochemistry. All receptors were found in the fetal kidney from the start of nephrogenesis. Insulin-like growth factor I receptor expression was ubiquitous and continuously present during metanephric development. Insulin receptor expression was developmentally regulated during kidney maturation with an enhanced expression in proximal tubules at the late stages of development. Insulin-like growth factor II/mannose 6-phosphate receptor expression was ubiquitous in the early stages of development and was dramatically decreased at the late stages of normal kidney development. Insulin receptor and insulin-like growth factor I receptor expressions were unchanged in diabetic metanephroi. Although the spatial expression of insulin-like growth factor II/mannose 6-phosphate receptor was unaffected by hyperglycemia, its expression was not downregulated in the mesenchyme of the nephrogenic zone of diabetic fetuses on gestational day 20. This study suggests a crucial role of insulin-like growth factor II/mannose 6-phosphate receptor in the pathogenesis of the impaired nephrogenesis in fetuses of diabetic mothers.  相似文献   

19.
The most commonly detected polymorphism in human insulin receptor substrate-1 (IRS-1), a glycine to arginine change at codon 972 (G972R), is associated with an increased risk of Type 2 diabetes and insulin resistance. To determine the molecular mechanism by which this polymorphism may be linked to insulin resistance, we produced recombinant peptides comprising amino acid residues 925-1008 from IRS-1 that contain either a glycine or arginine at codon 972 and the two nearby tyrosine phosphorylation consensus sites (EY(941)MLM and DY(989)MTM), which are known binding sites for the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. The wild type peptide could be phosphorylated at these sites in vitro by purified insulin receptor. Introduction of the G972R polymorphism into the peptide reduced the amount of tyrosine phosphorylation by >60%. Pull-down experiments indicated that there was an association between the IRS-1-(925-1008) peptide and the insulin receptor that was markedly enhanced by the presence of the G972R polymorphism. The use of additional overlapping fragments localized this interaction to domains between residues 950-986 of IRS-1 and residues 966-1271 of the insulin receptor, containing the tyrosine kinase domain of the receptor. In addition, the IRS-1-(925-1008) G972R peptide acted as a competitive inhibitor of insulin receptor and insulin-like growth factor-1 receptor autophosphorylation. Taken together, these data indicate that the G972R naturally occurring polymorphism of IRS-1 not only reduces phosphorylation of the substrate but allows IRS-1 to act as an inhibitor of the insulin receptor kinase, producing global insulin resistance.  相似文献   

20.
In contrast to its stimulation of insulin binding to human placental membranes, calcium inhibited the binding of insulin-like growth factor-I. The effects on receptors for both peptides were half-maximal at 2 mM calcium, and were entirely due to alterations in high affinity binding sites for the respective ligands. Calcium decreased the affinity of insulin-like growth factor-I sites, while stimulating the expression of high affinity insulin sites. Competition by each peptide at the receptor for the other peptide was enhanced by calcium. Modulation by calcium might provide a mechanism to amplify functional differences between the two structurally similar receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号