首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BamHI, from Bacillus amyloliquefaciens H, is a type II restriction-modification system recognizing and cleaving the sequence G--GATCC. The BamHI restriction-modification system contains divergently transcribed endonuclease and methylase genes along with a small open reading frame oriented in the direction of the endonuclease gene. The small open reading frame has been designated bamHIC (for BamHI controlling element). It acts as both a positive activator of endonuclease expression and a negative repressor of methylase expression of BamHI clones in Escherichia coli. Methylase activity increased 15-fold and endonuclease activity decreased 100-fold when bamHIC was inactivated. The normal levels of activity for both methylase and endonuclease were restored by supplying bamHIC in trans. The BamHI restriction-modification system was transferred into Bacillus subtilis, where bamHIC also regulated endonuclease expression when present on multicopy plasmid vectors or integrated into the chromosome. In B. subtilis, disruption of bamHIC caused at least a 1,000-fold decrease in endonuclease activity; activity was partially restored by supplying bamHIC in trans.  相似文献   

2.
Various chromosomal banding techniques were utilized on the catfish, Iheringichthys labrosus, taken from the Capivara Reservoir. C-banding regions were evidenced in telomeric regions of most of the chromosomes. The B microchromosome appeared totally heterochromatic. The restriction endonuclease AluI produced a banding pattern similar to C-banding in some chromosomes; the B microchromosome, when present, was not digested by this enzyme and remained stained. G-banding was conspicuous in almost all the chromosomes, with the centromeres showing negative G-banding. When the restriction endonuclease BamHI was used, most of the telomeres remained intact, while some centromeres were weakly digested. The B chromosome was also not digested by this enzyme. The first pair of chromosomes showed a pattern of longitudinal bands, both with G-banding and BamHI; this was more evident with G-banding. This banding pattern can be considered a chromosomal marker for this population of I. labrosus.  相似文献   

3.
The BamHI restriction modification system was previously cloned into E. coli and maintained with an extra copy of the methylase gene on a high copy vector (Brooks et al., (1989) Nucl. Acids Res. 17, 979-997). The nucleotide sequence of a 3014 bp region containing the endonuclease (R) and methylase (M) genes has now been determined. The sequence predicts a methylase protein of 423 amino acids, Mr 49,527, and an endonuclease protein of 213 amino acids, Mr 24,570. Between the two genes is a small open reading frame capable of encoding a 102 amino acid protein, Mr 13,351. The M. BamHI enzyme has been purified from a high expression clone, its amino terminal sequence determined, and the nature of its substrate modification studied. The BamHI methylase modifies the internal C within its recognition sequence at the N4 position. Comparisons of the deduced amino acid sequence of M. BamHI have been made with those available for other DNA methylases: among them, several contain five distinct regions, 12 to 22 amino acids in length, of pronounced sequence similarity. Finally, stability and expression of the BamHI system in both E. coli and B. subtilis have been studied. The results suggest R and M expression are carefully regulated in a 'natural' host like B. subtilis.  相似文献   

4.
Cloning the BamHI restriction modification system.   总被引:11,自引:7,他引:4       下载免费PDF全文
BamHI, a Type II restriction modification system from Bacillus amyloliquefaciensH recognizes the sequence GGATCC. The methylase and endonuclease genes have been cloned into E. coli in separate steps; the clone is able to restrict unmodified phage. Although within the clone the methylase and endonuclease genes are present on the same pACYC184 vector, the system can be maintained in E. coli only with an additional copy of the methylase gene present on a separate vector. The initial selection for BamHI methylase activity also yielded a second BamHI methylase gene which is not homologous in DNA sequence and hybridizes to different genomic restriction fragments than does the endonuclease-linked methylase gene. Finally, the interaction of the BamHI system with the E. coli Dam and the Mcr A and B functions, have been studied and are reported here.  相似文献   

5.
A reaction center H- strain (RCH-) of Rhodobacter sphaeroides, PUHA1, was made by in vitro deletion of an XhoI restriction endonuclease fragment from the puhA gene coupled with insertion of a kanamycin resistance gene cartridge. The resulting construct was delivered to R. sphaeroides wild-type 2.4.1, with the defective puhA gene replacing the wild-type copy by recombination, followed by selection for kanamycin resistance. When grown under conditions known to induce intracytoplasmic membrane development, PUHA1 synthesized a pigmented intracytoplasmic membrane. Spectral analysis of this membrane showed that it was deficient in B875 spectral complexes as well as functional reaction centers and that the level of B800-850 spectral complexes was greater than in the wild type. The RCH- strain was photosythetically incompetent, but photosynthetic growth was restored by complementation with a 1.45-kilobase (kb) BamHI restriction endonuclease fragment containing the puhA gene carried in trans on plasmid pRK404. B875 spectral complexes were not restored by complementation with the 1.45-kb BamHI restriction endonuclease fragment containing the puhA gene but were restored along with photosynthetic competence by complementation with DNA from a cosmid carrying the puhA gene, as well as a flanking DNA sequence. Interestingly, B875 spectral complexes, but not photosynthetic competence, were restored to PUHA1 by introduction in trans of a 13-kb BamHI restriction endonuclease fragment carrying genes encoding the puf operon region of the DNA. The effect of the puhA deletion was further investigated by an examination of the levels of specific mRNA species derived from the puf and puc operons, as well as by determinations of the relative abundances of polypeptides associated with various spectral complexes by immunological methods. The roles of puhA and other genetic components in photosynthetic gene expression and membrane assembly are discussed.  相似文献   

6.
We wish to report the initial characterization of a recombinant clone containing the BamHI methylase gene. Genomic chromosomal DNA purified from Bacillus amyloliquefaciens was partially cleaved with HindIII, fractionated by size, and cloned into pSP64. Plasmid DNA from this library was challenged with BamHI endonuclease and transformed into Escherichia coli HB101. A recombinant plasmid pBamM6.5 and a subclone pBamM2.5 were shown to contain the BamHI methylase gene based on three independent observations. Both plasmids were found to be resistant to BamHI endonuclease cleavage, and chromosomal DNA isolated from E. coli HB101 cells harboring either of the plasmids pBamM6.5 or pBamM2.5 was resistant to cleavage by BamHI endonuclease. In addition, DNA isolated from lambda phage passaged through E. coli HB101 containing either plasmid was also resistant to BamHI cleavage. Expression of the BamHI methylase gene is dependent on orientation in pSP64. In these clones preliminary evidence indicates that methylase gene expression may be under the direction of the plasmid encoded LacZ promoter.  相似文献   

7.
M13B1 vector based on the filamentous phage M13 has been constructed. M13B1 phage carries the gene of resistance to ampicillin and contains the unique site of recognition for BamHI restriction endonuclease in gene VIII coding for the major coat protein. BamHI restriction site has been inserted into the gene of the major coat protein by means of oligonucleotide directed mutagenesis. The synthetic DNA fragment coding for the model peptides has been inserted through BamHI site into the M13B1 DNA. The possibility of inserting foreign peptides into the N-terminus at maintaining the viability of hybrid phages has been shown. The differences in specificity of the recombinant phage maturation have been determined by analysing the amino acid sequence of B-protein.  相似文献   

8.
Variants of BamHI endonuclease in which the glutamate 113 residue has been changed to lysine or the aspartate 94 to asparagine were shown to behave as repressor molecules in vivo. This was demonstrated by placing a BamHI recognition sequence, GGATCC, positioned as an operator sequence in an antisense promoter for the aadA gene (spectinomycin resistance). Repression of this promoter relieved the inhibition of expression of spectinomycin resistance. This system was then used to select new binding proficient/cleavage deficient BamHI variants. The BamHI endonuclease gene was mutagenized either by exposure to hydroxylamine or by PCR. The mutagenized DNA was reintroduced into E. coli carrying the aadA gene construct, and transformants that conferred spectinomycin resistance were selected. Twenty Spr transformants were sequenced. Thirteen of these were newly isolated variants of the previously identified D94 and E113 residues which are known to be involved in catalysis. The remaining seven variants were all located at residue 111 and the glutamate 111 residue was shown to be involved with catalysis.  相似文献   

9.
Oligodeoxyribonucleotides which form a number of duplexes, containing the recognition sequences for endonuclease BamHI and DNA methylase Eco dam, were synthesised by the phosphotriester approach. Furthermore, synthesis of 3'-phosphorylated oligodeoxyribonucleotides from corresponding S-methyl phosphorothioate triester oligomers is described. The synthetic duplexes are characterized by some defects in the recognition sequences for endonuclease BamHI and methylase Eco dam, viz. nick, absence of an internucleotide phosphate, modifications (including partial single-strandedness) of the recognition site. Interaction of the enzymes with these synthetic substrates was investigated.  相似文献   

10.
P J Greenaway  J D Oram  R G Downing  K Patel 《Gene》1982,18(3):355-360
The cloned HindIII fragments of human cytomegalovirus (HCMV) strain AD169 DNA were mapped with respect to the BamHI, EcoRI and PstI restriction endonuclease cleavage sites. Composite restriction endonuclease cleavage maps for the entire virus genome were constructed using the previously established linkages between the HindIII fragments.  相似文献   

11.
Two species of restriction endonuclease were isolated by gel filtration and DEAE-cellulose chromatography from a cell-free extract of Bacillus amyloliquefaciens (B. subtilits) N strain; a lower molecular weight endonuclease (endonuclease R.BamNI) and a higher molecular-weight one (endonuclease R.BamNx). Both of them required only Mg2+ for their activities. Endonuclease R.BamNx introduced a larger number of site-specific scissions in Excherchia coli phage lambda DNA that endonuclease R.BamNI did. Endonuclease R.BamNx cleaved Bacillus phage phi 105C DNA at the specific sites which are classified into two groups: one type of sites is modified by B. amyloliquefaciens H strain in vivo while the other is not affected. It was also active on DNA'S OF E. coli phage T7, lambdadvl, Simian virus 40 (SV40) and colicinogenic factor ColEI and was inactive on DNAs of Bacillus phages phi 29 and M2. Endonuclease R.BamHI isolated from H strain by Wilson and Young. This endonuclease was active on DNAs of phage lambda, lambdadvl and SV40, adn was inactive on DNAs of phages phi 105C, phi 29, M2 and T7, and ColEI DNA.  相似文献   

12.
Arginyl residues in BamHI endonuclease were examined because of their alleged role in proteins that contain nucleotide- or phosphate-binding sites. Butanedione, an arginine-specific reagent, inhibited the endonuclease in the presence of sodium borate. The inhibition was decreased by preliminary incubation of the enzyme with DNA or competitive inhibitors which were the 5'-phosphoryl deoxydinucleotide subsets of the BamHI recognition sequence. The dinucleotide pdGpdG protected the enzyme most efficiently against the butanedione modification. Dinucleotides that were unrelated to the recognition sequence failed to protect the enzyme from inactivation. These studies indicate that arginine residues may reside in the enzyme's active site and might function in the sequence-specific recognition of the BamHI palindrome.  相似文献   

13.
Isolation of BamHI variants with reduced cleavage activities   总被引:4,自引:0,他引:4  
Derivation of the bamhIR sequence (Brooks, J. E., Nathan, P.D., Landry, D., Sznyter, L.A., Waite-Rees, P., Ives, C. C., Mazzola, L. M., Slatko, B. E., and Benner, J. S. (1991) Nucleic Acids Res., in press), the gene coding for BamHI endonuclease, has facilitated construction of an Escherichia coli strain that overproduces BamHI endonuclease (W. E. Jack, L. Greenough, L. F. Dorner, S. Y. Xu, T. Strezelecka, A. K. Aggarwal, and I. Schildkraut, submitted for publication). As expected, low-level constitutive expression of the bamhIR gene in E. coli from the Ptac promotor construct is lethal to the host unless the bamHIM gene, which encodes the BamHI methylase, is also expressed within the cell. We identified four classes of BamHI endonuclease variants deficient in catalysis by selecting for survival of a host deficient for bamHIM gene, transformed with mutagenized copies of the bamhIR gene, and then screening the surviving cell extracts for DNA cleavage and binding activities. Class I variants (G56S, G91S/T153I, T114I, G130R, E135K, T153I, T157I, G194D) displayed 0.1-1% of the wild-type cleavage activity; class II variant (D94N) lacked cleavage activity but retained wild-type DNA binding specificity; class III variants (E77K, E113K) lacked cleavage activity but bound DNA more tightly; class IV variants (G56D, G90D, G91S, R122H, R155H) lacked both binding and cleavage activities. Variants with residual cleavage activities induced the E. coli SOS response and thus are presumed to cleave chromosomal DNA in vivo. We conclude that Glu77, Asp94, and Glu113 residues are essential for BamHI catalytic function.  相似文献   

14.
G P Montgomery  B C Lu 《Génome》1990,33(1):101-108
A functional recombination assay involving the tetracycline mutant plasmids, pUW1 and pUW4, was used to assess (i) the nature of the DNA substrates needed and (ii) the involvement of Coprinus endonuclease in preparing substrate, for the RecA-directed recombination process. A gapped circular plasmid and a linear or a nicked circular plasmid are efficient substrate combinations in this system to achieve a 160-fold increase in the in vitro recombination frequency over the control levels. The Coprinus endonuclease obtained from early meiotic prophase can produce such substrates. The recombination frequency obtained with the combination of gapped pUW1 plasmids initially relaxed by the Coprinus endonuclease and linear pUW4 plasmids produced by the site-specific BamHI digest is 10-fold lower than that obtained when both substrates are digested by BamHI. The results suggest that the Coprinus endonuclease creates random nicks on plasmid DNA. Glyoxal gel electrophoretic analysis was used to confirm this random nicking activity of Coprinus endonuclease.  相似文献   

15.
Double-stranded chicken lysozyme cDNA was synthesized from an oviduct mRNA fraction enriched for lysozyme mRNA. The ds-cDNA was inserted into the BamHI site of plasmid pBR322 using chemically synthesized DNA linker molecules containing the BamHI restriction endonuclease cleavage site. After bacterial transformation, colonies carrying lysozyme DNA were identified by hybridization with highly purified lysozyme cDNA. The 555 base pairs long cloned DNA fragment of one recombinant plasmid was isolated and characterized by restriction endonuclease digestion. The DNA sequence of selected parts of the inserted DNA is as predicted from the amino acid sequence of prelysozyme. The sequence data allows the unambiguous location of the coding region within lysozyme mRNA.  相似文献   

16.
E Szomolányi  A Kiss  P Venetianer 《Gene》1980,10(3):219-225
The gene coding for the sequence-specific modification methylase methM . BspI of Bacillus sphaericus R has been cloned in Escherichia coli by means of plasmid pBR322. The selection was based on the expression of the cloned gene which rendered the recombinant plasmid resistant to BspI restriction endonuclease cleavage. The gene is carried by a 9 kb BamHI fragment and by a smaller 2.5 kb EcoRI fragment derived from the BamHI fragment. The Bsp-specific methylase level was found to be higher in the recombinant clones than in the parental strain. The methylase gene is probably located on the Bacillus sphaericus chromosome, and not on a plasmid known to be carried by this strain. The recombinant clones do not exhibit an BspI restriction endonuclease activity.  相似文献   

17.
The localization of KpnI, SacI, XhoI, AvaI, PstI, BglI, BamHI, EcoRI, PmiI, SalI, BglII, restriction endonuclease cleavage sites in HindIII-F-fragments of DNA from vaccinia strains WR, Copenhagen, LIVP and neurovaccine has been detected. The fragments have been shown to differ in the number of AvaI, EcoRI and BamHI sites. The fragments also differ from the analogue of Tian Tan vaccinia strain in the pattern of restriction by AvaI, XhoI, PstI, EcoRI and BamHI endonucleases.  相似文献   

18.
M McClelland  M Nelson 《Gene》1988,74(1):169-176
Site-specific DNA methylation is known to block cleavage by a number of restriction endonucleases. We show that methylation at 'non-canonical' DNA modification sites can also block methylation by five of 13 DNA methyltransferases (MTases) tested. Furthermore, MTases and endonucleases that recognize the same nucleotide sequence can differ in their sensitivity to non-canonical methylation. In particular, BamHI endonuclease can cut 5'-GGATCm5C efficiently, whereas M.BamHI cannot methylate this modified sequence. Methyltransferase/endonuclease pairs which differ in their sensitivity to non-canonical methylation can be exploited to generate rare DNA cleavage sites. For example, we show that M.HpaII, M.BamHI, and BamHI can be used sequentially in a three-step procedure to specifically cleave DNA at the 10-bp sequence 5'-CCGGATCCGG. Several highly selective DNA cutting strategies are made possible by these sequential double methylation-blocking reactions.  相似文献   

19.
The restriction endonuclease BstI was purified from 70kg of Bacillus stearothermophilus. The final product is at least 97% pure as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; this major protein species co-migrates with the enzyme activity on native polyacrylamide-gel electrophoresis and isoelectric focusing. Pure restriction endonuclease BstI has a subunit mol.wt. of 26,000 and is probably a loosely associated dimer. The enzyme shows maximum activity at pH values between 7 and 9.5, and in the presence of 0.5-2mM-Mg2+. NaCl inhibits the restriction enzyme activity. Restriction endonuclease BstI cleaves DNA in a position identical with that cleaved by endonuclease BamHI (for Bacillus amyloliquefaciens), i.e.: (formula: see text). In the presence of high concentrations of enzyme, DNA cleavage occurs at secondary sites. This side-specificity is enhanced by the addition of glycerol. Preliminary studies indicate that these sites are of the type: (formula: see text).  相似文献   

20.
Mutants of simian virus 40 (SV40), with deletions ranging in size from fewer than 3 to 750 base pairs located throughout the SV40 genome, were obtained by infecting CV-1P cells with linear SV40 DNA and DNA of an appropriate helper virus. The linear DNA was obtained by complete cleavage of closed circular DNA with Hae II or Bam HI endonuclease or partial cleavage with either Hae III endonuclease or nuclease S1, followed, in some cases, by mild digestion with phage lambda 5' -exonuclease. The following mutants with deletions in the late region of the SV40 genome were obtained and characterized. Ten, containing deletions at the Hae II endonuclease site (map location 0.83), define a new genetic complementation group, E, grow extremely slowly without helper virus, and cause alterations only in VP2. Two mutants with deletions in the region 0.92 to 0.945 affect both VP2 and VP3, demonstrating that VP3 shares sequences with the C-terminal portion of VP2. The mutant with a deletion at 0.93 is the first deletion mutant in the D complementation group and is also temperature sensitive; the mutant with a deletion at 0.94 is viable and grows normally. Three mutants with deletions at the EcoRI endonuclease site (0/1.0) and eleven with deletions at the BamHI endonuclease site (0.15) fall into the B/C complementation group. Six additional mutants with deletions at the BamHI endonuclease site are viable, growing more slowly than wild type. VP1 is the only polypeptide affected by mutants in the B/C group. A mutant with a deletion of the region 0.72 to 0.80 has a polar effect, failing to express the E, D, and B/C genes. Mutants with deletions in the early region (0.67 counterclockwise to 0.17) at 0.66 to 0.59, 0.48, 0.47, 0.33, and 0.285 to 0.205 are all members of the A complementation group. Thus, the A gene is the only viral gene in the early region whose expression is necessary for productive infection of permissive cells. Since mutants with deletions in the region 0.59 to 0.54 are viable, two separate regions are essential for expression of the gene A function: 0.66 to 0.59 and 0.54 to 0.21. Mutants with deletions at 0.21 and 0.18 are viable. Approximate map locations of SV40 genes and possible models for their regulation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号