首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The uptake and release of [3H]noradrenaline and [3H]-5-hydroxytryptamine (5-HT) were studied in cerebral cortex slices from rats 30 min and 24 h after a single electroconvulsive shock (ECS) and 24 h after a series of five shocks given over 10 days. Both the K m and V max for 5-HT uptake were lower than controls 24 h after a single ECS, whereas after 5 ECS spread over 10 days both parameters remained depressed, though only the fall in Vmax was significant. Noradrenaline uptake was not altered after a single ECS, but the Vmax and K m were elevated following chronic ECS treatment. Neither ECS treatment schedule had any effect on the potassium-stimulated release of either transmitter. It is possible that the changes in monoamine uptake seen following ECS are an adaptive response to alterations in the synaptic cleft concentration of these transmitters.  相似文献   

2.
Voltage-dependent 45Ca2+ uptake and endogenous norepinephrine (NE) release were measured simultaneously in synaptosomes isolated from rat hypothalamus, brainstem, and cerebellum at 1, 3, 5, 15, and 30 s. In synaptosomes depolarized by 125 mM KCl, 45Ca2+ uptake and NE release exhibited fast and slow components. Rates of NE release and 45Ca2+ uptake were fastest from 0 to 1 s. NE release and 45Ca2+ uptake rates from 1 to 5 s were less than 15% of 0-1 s rates. Both resting (5 mM KCl) and depolarization-induced (125 mM KCl) NE release paralleled 45Ca2+ uptake from 1 to 30 s. Voltage-dependent NE release was approximately 1% and 2% of total synaptosomal NE content at 1- and 30-s measurement intervals, respectively, and did not differ between the three brain regions studied. Calcium and potassium dependence studies showed that NE release was stimulated by increased potassium and that depolarization-induced NE release was dependent on the presence of external calcium. These results show that calcium-dependent NE release from synaptosomes is correlated with calcium entry. Both processes exhibit fast and slow temporal components.  相似文献   

3.
Abstract: Activation of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype of ionotropic glutamate receptors has been shown to result in a rapid desensitization of the receptor in the presence of certain agonists. One effect of AMPA receptor desensitization in the hippocampus may be to decrease the efficacy of AMPA receptor agonists at stimulating the release of norepinephrine from noradrenergic terminals. Recently, cyclothiazide was reported to inhibit AMPA receptor desensitization by acting at a distinct site on AMPA receptors. We have examined the effect of cyclothiazide on AMPA- and kainate (KA)-induced norepinephrine release from rat hippocampal slices to determine whether cyclothiazide would increase the efficacy of AMPA-induced [3H]norepinephrine release by inhibiting AMPA receptor desensitization. Cyclothiazide was observed to potentiate markedly both AMPA- and KA-induced [3H]norepinephrine release. This potentiation is selective for AMPA/KA receptors as cyclothiazide did not potentiate N -methyl- d -aspartate-induced [3H]norepinephrine release or release induced by the nonspecific depolarizing agents veratridine and 4-aminopyridine. These results demonstrate that AMPA receptor-mediated modulation of [3H]norepinephrine release from rat brain slices is a useful approach to studying the cyclothiazide modulatory site on the AMPA receptor complex.  相似文献   

4.
Rat brain cortical slices released tritiated norepinephrine ([3H]NA) during a 2-min stimulation with N-methyl-D-aspartate (NMDA). Dithiothreitol (DTT; 0.1-5 mM), present for 6 min prior to stimulation, dose-dependently increased the release of [3H]NA from cortical slices stimulated with a maximally effective concentration of NMDA (500 microM). Similar results were observed for [3H]NA release from hippocampal slices and tritiated and endogenous dopamine release from striatal slices. DTT treatment also markedly shifted the dose-response curve of NMDA to the left. Cortical slices released approximately the same amount of [3H]NA with 10 microM NMDA following DTT treatment (about 5%) as non-DTT-treated control slices did with 500 microM NMDA. The effects of DTT were fully reversed by subsequent treatment with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB; 0.5 mM). DTT treatment did not significantly alter the ability of magnesium (1.3 mM) or the polyamine antagonist arcaine to block the NMDA-stimulated release of [3H]NA. In contrast, DTT treatment significantly attenuated the antagonist effects of the competitive glycine antagonist, 7-chlorokynurenic acid, and the competitive NMDA antagonist, 2-aminophosphonopentanoic acid. These results suggest that oxidation and reduction of disulfide bonds located within the NMDA receptor complex might regulate the activation of the NMDA receptor. This could have important consequences in vivo if endogenous oxidizing/reducing systems are found to have similar effects on NMDA-stimulated responses.  相似文献   

5.
Vatta, M. S., M. F. Presas, L. G. Bianciotti, M. Rodriguez–fermepin, R. Ambros and B. E. Fernandez. B and C types natriuretic peptides modify norepinephrine uptake and release in the rat adrenal medulla. Peptides 18(10) 1483–1489, 1997.—We have previously reported that atrial natriuretic factor (ANF) modulates adrenomedullar norepinephrine (NE) metabolism. On this basis, the aim of the present work was to study the effects of B and C types natriuretic peptides (BNP and CNP) on the uptake, intracellular distribution and release of 3H-NE. Experiments were carried out in rat adrenal medulla slices incubated “in vitro.” Results showed that 100 nM of both, CNP and BNP, enhanced total and neuronal NE uptake. Both peptides (100 nM) caused a rapid increase in NE uptake during the first minute, which was sustained for 60 min. NE intracellular distribution was only modified by CNP (100 nM), which increased the granular fraction and decreased the cytosolic pool. On the other hand, spontaneous as well as evoked (KCl) NE release, was decreased by BNP and CNP (50 and 100 nM for spontaneous release and 1, 10, 50 and 100 nM for evoked output). The present results suggest that BNP and CNP may regulate catecholamine secretion and modulate adrenomedullary biological actions mediated by catecholamines, such as blood arterial pressure, smooth muscle tone, and metabolic activities.  相似文献   

6.
The involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) and cyclic AMP-dependent protein kinase in the K+-evoked release of norepinephrine (NE) was studied using guinea pig brain cortical synaptosomes preloaded with [3H]NE. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, enhanced the K+-evoked release of [3H]NE, in a concentration-dependent manner, but with no effect on the spontaneous outflow and uptake of [3H]NE in the synaptosomes. The apparent affinity of the evoked release for added calcium but not the maximally evoked release was increased by TPA (10(-7) M). Inhibitors of PKC, polymyxin B, and a more potent inhibitor, staurosporine, counteracted the TPA-induced potentiation of the evoked release. Both forskolin and dibutyryl cyclic AMP (DBcAMP) enhanced the evoked release, but reduced the TPA-potentiated NE release. A novel inhibitor of cyclic AMP-dependent protein kinase, KT5720, blocked both the forskolin-induced increase in the evoked release and its inhibition of TPA-induced potentiation in the evoked release, thereby suggesting that forskolin or DBcAMP counteracts the Ca2+-dependent release of NE by activating cyclic AMP-dependent protein kinase. These results suggest that the activation of PKC potentiates the evoked release of NE and that the activation of cyclic AMP-dependent protein kinase acts negatively on the PKC-activated exocytotic neurotransmitter release process in brain synaptosomes of the guinea pig.  相似文献   

7.
Abstract: The role of nitric oxide (NO) in the control of 5-hydroxytryptamine (5-HT)-induced release of substance P was investigated in rat spinal cord in vitro. 5-HT facilitated the 60 m M K+-evoked release of substance P-like immunoreactive materials (SPLI) from the superfused rat dorsal spinal cord slices without affecting spontaneous SPLI release. The facilitatory effect of 5-HT was significantly inhibited by ICS 205-930 or granisetron (potent and specific 5-HT3 receptor antagonists), by N G-monomethyl- l -arginine (NMMA, a NO synthase inhibitor), and by methylene blue or 1 H -[1,2,4]oxadiazolo[4,3- a ]quinoxaline-1-one (MB or ODQ, respectively; both are inhibitors of soluble guanylyl cyclase) and was mimicked by 2-methylserotonin (2-m-5-HT, a selective 5-HT3 receptor agonist), l -arginine (a precursor of NO), or 8-bromo-cyclic GMP. NMMA, MB, or ODQ inhibited the 2-m-5-HT-induced increase of cyclic GMP levels in the rat dorsal spinal cord slices. These data suggest that the facilitatory effect of 5-HT on the release of SPLI is mediated by the 5-HT3 receptor and that the intracellular signaling is mediated via NO by an increase in cyclic GMP production.  相似文献   

8.
Kiss  J. P.  Windisch  K.  De Oliveira  K.  Hennings  E. C. P.  Mike  A.  Szász  B. K. 《Neurochemical research》2001,26(8-9):943-950
The aim of this study was to investigate the mechanisms involved in the effect of nicotinic agonists on the [3H]norepinephrine ([3H]NE) release from rat hippocampal slices. The stimulatory effect of nicotine, cytisine, epibatidine and anatoxin-A was completely blocked by the nicotinic antagonist mecamylamine (10 M). In contrast, the effect of dimethylphenylpiperazinium (DMPP) was only partially inhibited by mecamylamine but was completely blocked by the NE uptake inhibitor desipramine (DMI, 10 M). Finally, the effect of lobeline was not affected by mecamylamine and was only partially blocked by DMI. Our data indicate that the majority of nicotinic agonists increase the release of [3H]NE exclusively via stimulation of nicotinic acetylcholine receptors (nAChRs). DMPP, in addition to the stimulation of nAChRs, also evokes a carrier-mediated release. Lobeline has no stimulatory effect on nAChRs, induces a carrier-mediated release and has a further action of unidentified mechanism. Our results suggest that special caution is required for the interpretation of data, when DMPP or lobeline are used as nicotinic agonists.  相似文献   

9.
Abstract: The effect of antibodies to GM1 ganglioside on release of neurotransmitters from rat brain slices was studied. Depolarization-induced (40 mM-KCl or veratrine) release of γ-aminobutyric acid was markedly enhanced. Depolarization-induced release of norepinephrine was only slightly enhanced, whereas that of serotonin was unaffected. No effect on spontaneous release was observed for any of these three neurotransmitters. These results show that antibodies that can bind to synaptic membrane antigens may alter neurotransmitter release and that antibodies directed against GM1 ganglioside exhibit a measure of specificity in producing such an effect.  相似文献   

10.
The effect of acute and chronic lithium treatments on 5-hydroxytryptamine (5-HT, serotonin) release and on its regulation by presynaptic 5-HT autoreceptors was studied in [3H]5-HT preloaded superfused rat brain slices. The [3H]5-HT overflow evoked by a 30-s exposure to 65 mM K+ was increased after 3 weeks of ingestion of lithium-containing diet in the three brain areas examined. Acute injection of 4 mEq/kg lithium chloride did not affect 5-HT release. The K+-induced release observed in both control and chronically lithium-treated animals was Ca2+-dependent. Chronic lithium treatment was also found to be associated with a decrease in basal [3H]5-HT overflow in the cortex and hypothalamus but not in hippocampus [corrected]. The Ca2+-independent overflow induced by fenfluramine was also decreased in cortical slices from lithium-treated animals. The sensitivity of the inhibitory 5-HT autoreceptors was assessed by the response to the 5-HT agonist 5-methoxytryptamine. The results indicate a marked reduction in the maximal inhibition of [3H]5-HT release induced by 5-methoxytryptamine in slices obtained from animals which have been treated with lithium for 3 weeks. These data suggest that the functional down regulation of the prejunctional 5-HT sites may be responsible for the increase in K+-stimulated 5-HT overflow in brain slices of animals treated chronically with lithium.  相似文献   

11.
Superfusates from rat brain slices were screened for thiol compounds after derivatization with monobromobimane by reversed-phase HPLC. Only glutathione and cysteine were detected. The Ca(2+)-dependent release of these compounds from slices of different regions of rat brain was investigated, applying a highly sensitive and reproducible quantification method, based on reduction of superfusates with dithiothreitol, reaction of thiols with iodoacetic acid, precolumn derivatization with o-phthalaldehyde reagent solution, and analysis with reversed-phase HPLC. This methodology allowed determination of reduced and total thiols in aliquots of the same superfusates. Mostly reduced glutathione and cysteine were released upon K+ depolarization and the Ca2+ dependency suggests that they originate from a neuronal compartment. The GSH release was most prominent in the mesodiencephalon, cortex, hippocampus, and striatum and lowest in the pons-medulla and cerebellum. This underscores a physiologically significant role for glutathione in CNS neurotransmission.  相似文献   

12.
The effects of age on the activity and translocation of protein kinase C (PKC) and on the facilitation of 5-hydroxytryptamine (5-HT, serotonin) release induced by PKC activation with the phorbol ester phorbol 12-myristate 13-acetate were investigated. The activities of cortical PKC and its translocation in response to K+ depolarization and phorbol ester stimulation were reduced during aging in Fischer-344 rats. Parietal cortical brain slices from 6-, 12-, and 24-month-old animals were preloaded with [3H]5-HT and release was evoked by 65 mM K+ or the calcium ionophore A23187. 5-HT release induced by either K+ or A23187 was found to be reduced in 12- and 24-month-old as compared to 6-month-old animals. This decrease was not reversed by high extracellular Ca2+. Activation of PKC resulted in a facilitated transmitter release in tissue from 6- and 12-month-old animals but reduced [3H]5-HT release in slices from 24-month-old animals. These responses were prevented by the putative PKC inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), but not by increasing extracellular or intracellular Ca2+. The results demonstrate an age-related change (1) in brain PKC activity and translocation and (2) in a physiological response to PKC stimulation. These results may have implications for other PKC-mediated functions that are altered during senescence.  相似文献   

13.
Abstract: Fast scan cyclic voltammetry with carbon fiber electrodes has been used to investigate the dynamics of the neurotransmitter 5-hydroxytryptamine (5-HT) in the extracellular fluid of two brain regions: the dorsal raphe and the substantia nigra reticulata. The method used previously was shown to be optimized to allow the time course of 5-HT concentration changes to be measured rapidly. Measurements were made in slices prepared from the brains of rats with the carbon fiber electrode inserted into the tissue and a bipolar stimulating electrode placed on the slice surface. Identification of 5-HT as the detected substance in both regions was based on voltammetric, anatomical, physiological, and pharmacological evidence. Autoradiography using [3H]paroxetine revealed highest 5-HT transporter binding densities in the regions in which voltammetric measurements were made. Evaluation of the pharmacological actions of tetrodotoxin and tetrabenazine, as well as the effects of calcium removal, suggested that 5-HT storage was vesicular and that the release process was exocytotic. The effects of fluoxetine (0.5 µM) were typical of a competitive uptake inhibitor, changing Km with little effect on Vmax. Release of 5-HT was found to be maximal with wide (2-ms) stimulus pulses in both regions, as expected for release from small unmyelinated processes, and to increase linearly with the number of pulses when high frequencies (100 Hz) were used. At lower frequencies, the concentration observed was a function of both release and uptake. Kinetic simulations of the data revealed that the major difference in 5-HT neurotransmission between the two regions was that release and uptake rates are twice as large in the dorsal raphe ([5-HT] per pulse = 100 ± 20 nM, Vmax = 1,300 ± 20 nM/s for dorsal raphe; [5-HT] per pulse = 55 ± 7 nM, Vmax = 570 ± 70 nM/s for substantia nigra reticulata). When normalized to tissue content, uptake rates in both regions were identical and similar to rates previously reported for dopamine in dopamine terminal regions. Nonetheless, compared with dopaminergic transmission in terminal regions such as the striatum, the absolute clearance rates in the substantia nigra reticulata and dorsal raphe were lower, resulting in a longer lifetime of 5-HT in the extracellular fluid and allowing long-range interactions.  相似文献   

14.
Abstract: K m and V max values of monoamine oxidase (MAO) A and B towards 5-hydroxytryptamine were determined for rat brain homogenates after the in vitro inhibition of one of the two forms by the selective inhibitors clorgyline and l -deprenyl. K m values of 178 and 1170μ m , and V max values of 0.73 and 0.09 nmol·mg protein−1·min−1 towards 5-hydroxytryptamine were found for MAO-A and -B, respectively. The K 1 for 5-hydroxytryptamine as a competitive inhibitor of β-phenethylamine oxidation by MAO-B was found to be 1400 μm. The significance of these findings is discussed.  相似文献   

15.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

16.
Abstract: Rat medullary brain segments containing primarily nucleus tractus solitarius (NTS) were used for superfusion studies of evoked transmitter release and for isotherm receptor binding assays. Isotherm binding assays with [3H]CGS-21680 on membranes prepared from NTS tissue blocks indicated a single high-affinity binding site with a KD of 5.1 ± 1.4 nM and a Bmax of 20.6 ± 2.4 fmol/mg of protein. The binding density for [3H]CGS-21680 on NTS membranes was 23 times less than comparable binding on membranes from striatal tissue. Electrically stimulated (1 min at 25 mA, 2 ms, 3 Hz) release of [3H]norepinephrine ([3H]NE) from 400-µm-thick NTS tissue slices resulted in an S2/S1 ratio of 0.96 ± 0.02. Superfusion of single tissue slices with 0.1–100 nM CGS-21680, a selective adenosine A2a receptor agonist, for 5 min before the S2 stimulus produced a significant concentration-dependent increase in the S2/S1 fractional release ratio that was maximal (31.3% increase) at 1.0 nM. However, superfusion of tissue slices with CGS-21680 over the same concentration range for 20 min before the S2 stimulus did not alter the S2/S1 ratio significantly from control release ratios. The augmented release of [3H]NE mediated by 1.0 nM CGS-21680 with a 5-min tissue exposure was abolished by 1.0 and 10 nM CGS-15943 as well as by 100 nM 8-(3-chlorostyryl)caffeine, both A2a receptor antagonists, but not by 1.0 nM 8-cyclopentyl-1,3-dipropylxanthine, the A1 receptor antagonist. Taken together, these results suggest that CGS-21680 augmented the evoked release of [3H]NE in the NTS via activation of presynaptic A2a receptors within the same concentration range as the binding affinity observed for [3H]CGS-21680. It was also apparent that this population of presynaptic adenosine A2a receptors in the NTS desensitized within 20 min because the augmenting action of CGS-21680 on evoked transmitter release was not evident at the longer interval.  相似文献   

17.
The effect of calcium channel antagonists on the release of 5-hydroxytryptamine from the hippocampus of the chloral hydrate-anaesthetised rat was studied using the technique of intracerebral microdialysis. As the basal concentration of 5-hydroxytryptamine was close to the limit of detection of the HPLC method (8 fmol), the 5-hydroxytryptamine reuptake inhibitor, fluoxetine (10 microM), was included in the perfusion fluid. The L-type voltage-sensitive calcium channel antagonists, PN200-110, diltiazem, and verapamil, all passed through the dialysis membrane, giving a recovery of 20-30%. The N-type voltage-sensitive calcium channel antagonist, omega-conotoxin, penetrated less readily (12% recovery). The dihydropyridine, PN200-110, adhered to the probe, resulting in an effective concentration at the membrane 30% of that in the perfusion fluid. The concentration of 5-hydroxytryptamine in the dialysate samples was reduced by 60% in the absence of calcium. The L channel antagonists had little effect on the release of 5-hydroxytryptamine, which was inhibited, in a dose-dependent manner, to a maximum of 40% by omega-conotoxin. It is concluded that, under physiological conditions, the release of 5-hydroxytryptamine from the rat hippocampus is dependent on the entry of calcium through N-type voltage-sensitive calcium channels, although another calcium channel may also be involved.  相似文献   

18.
Abstract: Serotonergic neurons of the dorsal and median raphe nuclei are morphologically dissimilar. Recent results challenge previous evidence indicating a greater inhibition of dorsal raphe neurons after 5-hydroxytryptamine1A (5-HT1A) autoreceptor activation. As both nuclei innervate different forebrain territories, this issue is critical to understanding the changes in brain function induced by anxiolytic and antidepressant drugs. Using microdialysis, we examined the modifications of 5-HT release induced by the selective 5-HT1A agonist ipsapirone in both neuronal pathways. Maximal and minimal basal 5-HT values (in the presence of 1 µ M citalopram) were 45.0 ± 4.8 fmol/fraction in the median raphe nucleus and 8.4 ± 0.4 fmol/fraction in the dorsal hippocampus. Ipsapirone (0.3, 3, and 10 mg/kg s.c.) reduced dose-dependently 5-HT in the two raphe nuclei and four forebrain areas. Maximal reductions (to ∼25% of predrug values) were observed in cortex and striatum and in median raphe nucleus. The effects were more moderate in dorsal and ventral hippocampus (to 66 and 50% of baseline, respectively). These results are consistent with a higher sensitivity of dorsal raphe neurons to 5-HT1A autoreceptor activation. Yet the differential reduction of 5-HT release in the median raphe nucleus and hippocampus suggests the presence of complex mechanisms of control of 5-HT release in these neurons.  相似文献   

19.
In vivo microdialysis in the frontal cortex of the freely moving guinea-pig was used to measure extracellular 5-hydroxytryptamine (5-HT) and study terminal autoreceptor control of its release. The indoleamine levels were determined by HPLC with electrochemical detection. Release of extracellular 5-HT and, to a lesser extent, 5-hydroxyindoleacetic acid was sensitive to tetrodotoxin, confirming the neuronal origin of measured neurotransmitter levels. Both systemic and local administration of the 5-HT1 agonist 5-carboxamidotryptamine caused inhibition of extracellular 5-HT levels, confirming the regulatory role of the terminal, and possibly also the somatodendritic, 5-HT autoreceptor on neuronal 5-HT release. Levels of extracellular 5-hydroxyindoleacetic acid were not affected by 5-carboxamidotryptamine following either central or peripheral administration.  相似文献   

20.
Labelled adenine, noradrenaline (NA), and gamma-aminobutyric acid (GABA) were taken up by the transversely cut hippocampal slice. [3H]NA and [14C]GABA were retained as such, [3H]- (or [14C]-) adenine mainly as adenine nucleotides. There was a spontaneous overflow of all three types of compounds ranging from 0.1 (GABA) to 0.21 (NA) %/min. The rate of [3H]NA overflow increased rapidly during electrical field stimulation. The release rate was well maintained over a 15-min period. The rate of [14C]GABA release also increased rapidly but it was not maintained over a 15-min period even if uptake and/or metabolism was inhibited by nipecotic acid (1 mM) and aminooxyacetic acid (AOAA, 0.1 mM). The bulk of the purines was released after the stimulation period. For all compounds the amounts released were frequency- and calcium-dependent. At a frequency of 3 Hz a 10 V stimulation was sufficient to cause a maximal [3H]NA release and 20 V to cause maximal [14C]GABA release, but 14C-purine release was increased further by increasing the voltage to 40 V. The evoked purine release was inhibited by a nucleoside uptake inhibitor (dipyridamole). On stimulation of [3H]NA-labelled slices the released radioactivity was composed of greater than 95% unchanged NA. The specific activities of NA in the slice and in the superfusate were practically identical. In [3H]adenine-labelled slices the released radioactivity was composed of adenosine, inosine, and hypoxanthine, but the activity in the slice of ATP, ADP, and AMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号