首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the gene parkin in humans (PARK2) are responsible for a large number of familial cases of autosomal-recessive Parkinson disease. We have isolated a Drosophila homolog of human PARK2 and characterized its expression and null phenotype. parkin null flies have 30% lower mass than wild-type controls which is in part accounted for by a reduced cell size and number. In addition, these flies are infertile, show significantly reduced longevity, and are unable to jump or fly. Rearing mutants on paraquat, which generates toxic free radicals in vivo, causes a further reduction in longevity. Furthermore, loss of parkin results in progressive degeneration of most indirect flight muscle (IFM) groups soon after eclosion, accompanied by apoptosis. However, parkin mutants have normal neuromuscular junction recordings during the third larval instar stage, suggesting that larval musculature is intact and that parkin is required only in pupal and adult muscle. parkin flies do not show an age-dependent dopaminergic neuron loss in the brain, even after aging adults for 3 weeks. Nevertheless, degeneration of IFMs demonstrates the importance of parkin in maintaining specific cell groups, perhaps those with a high-energy demand and the concomitant production of high levels of free radicals. parkin mutants will be a valuable model for future analysis of the mechanisms of cell and tissue degeneration.  相似文献   

2.
In the Drosophila flightless mutant Ifm(3)3, a transposable element inserted into the alternatively spliced fourth exon of the tropomyosin I (TmI) gene prevents proper expression of Ifm-TmI, the tropomyosin isoform found in indirect flight muscle. We have rescued the flightless phenotype of Ifm(3)3 flies using P-element-mediated transformation with a segment of the Drosophila genome containing the wild-type TmI gene plus 2.5 kb of 5' flanking and 2 kb of 3' flanking DNA. The inserted TmI gene is expressed with the proper developmental and tissue specificity, although its level of expression varies among the five transformed lines examined. These conclusions are based on analyses of flight, myofibrillar morphology, and TmI RNA and protein levels. A minimum of two copies of the inserted TmI gene per cell is necessary to restore flight to most of the flies in each line. We also show that the Ifm-TmI isoform is expressed in the leg muscle of wild-type flies and is decreased in Ifm(3)3 leg muscle. Homozygous Ifm(3)3 mutants do not jump. The ability to jump can be restored with a single copy of the wild-type TmI gene per cell.  相似文献   

3.
4.
We have identified a new gene, Zfrp8, as being essential for hematopoiesis in Drosophila. Zfrp8 (Zinc finger protein RP-8) is the Drosophila ortholog of the PDCD2 (programmed cell death 2) protein of unknown function, and is highly conserved in all eukaryotes. Zfrp8 mutants present a developmental delay, lethality during larval and pupal stages and hyperplasia of the hematopoietic organ, the lymph gland. This overgrowth results from an increase in proliferation of undifferentiated hemocytes throughout development and is accompanied by abnormal differentiation of hemocytes. Furthermore, the subcellular distribution of gamma-Tubulin and Cyclin B is affected. Consistent with this, the phenotype of the lymph gland of Zfpr8 heterozygous mutants is dominantly enhanced by the l(1)dd4 gene encoding Dgrip91, which is involved in anchoring gamma-Tubulin to the centrosome. The overgrowth phenotype is also enhanced by a mutation in Cdc27, which encodes a component of the anaphase-promoting complex (APC) that regulates the degradation of cyclins. No evidence for an apoptotic function of Zfrp8 was found. Based on the phenotype, genetic interactions and subcellular localization of Zfrp8, we propose that the protein is involved in the regulation of cell proliferation from embryonic stages onward, through the function of the centrosome, and regulates the level and localization of cell-cycle components. The overproliferation of cells in the lymph gland results in abnormal hemocyte differentiation.  相似文献   

5.
6.
7.
The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.  相似文献   

8.
R. M. Cripps  E. Ball  M. Stark  A. Lawn    J. C. Sparrow 《Genetics》1994,137(1):151-164
To identify further mutations affecting muscle function and development in Drosophila melanogaster we recovered 22 autosomal dominant flightless mutations. From these we have isolated eight viable and lethal alleles of the muscle myosin heavy chain gene, and seven viable alleles of the indirect flight muscle (IFM)-specific Act88F actin gene. The Mhc mutations display a variety of phenotypic effects, ranging from reductions in myosin heavy chain content in the indirect flight muscles only, to reductions in the levels of this protein in other muscles. The Act88F mutations range from those which produce no stable actin and have severely abnormal myofibrillar structure, to those which accumulate apparently normal levels of actin in the flight muscles but which still have abnormal myofibrils and fly very poorly. We also recovered two recessive flightless mutants on the third chromosome. The remaining five dominant flightless mutations are all lethal alleles of a gene named lethal(3)Laker. The Laker alleles have been characterized and the gene located in polytene bands 62A10,B1-62B2,4. Laker is a previously unidentified locus which is haplo-insufficient for flight. In addition, adult wild-type heterozygotes and the lethal larval trans-heterozygotes show abnormalities of muscle structure indicating that the Laker gene product is an important component of muscle.  相似文献   

9.
The molecular mechanism of myosin function was addressed by measuring transient kinetic parameters of naturally occurring and chimeric Drosophila muscle myosin isoforms. We assessed the native embryonic isoform, the native indirect flight muscle isoform, and two chimeric isoforms containing converter domains exchanged between the indirect flight muscle and embryonic isoforms. Myosin was purified from the indirect flight muscles of transgenic flies, and S1 was produced by alpha-chymotryptic digestion. Previous studies in vertebrate and scallop myosins have shown a correlation between actin filament velocity in motility assays and cross-bridge detachment rate, specifically the rate of ADP release. In contrast, our study showed no correlation between the detachment rate and actin filament velocity in Drosophila myosin isoforms and further that the converter domain does not significantly influence the biochemical kinetics governing the detachment of myosin from actin. We suggest that evolutionary pressure on a single muscle myosin gene may maintain a fast detachment rate in all isoforms. As a result, the attachment rate and completion of the power stroke or the equilibrium between actin.myosin.ADP states may define actin filament velocity for these myosin isoforms.  相似文献   

10.
We have investigated the molecular bases of muscle abnormalities in four Drosophila melanogaster heldup mutants. We find that the heldup gene encodes troponin-I, one of the principal regulatory proteins associated with skeletal muscle thin filaments. heldup3, heldup4, and heldup5 mutants, all of which have grossly abnormal flight muscle myofibrils, lack mRNAs encoding one or more troponin-I isoforms. In contrast, heldup2, an especially interesting mutant wherein flight muscles are atrophic, synthesizes the complete mRNA complement. By sequencing mutant troponin-I cDNAs we demonstrate that the molecular basis for muscle degeneration in heldup2 is conversion of an invariant alanine residue to valine. We finally show that degeneration of heldup2 thin filament/Z-disc networks can be prevented by eliminating thick filaments from flight muscles using a null allele of the sarcomeric myosin heavy chain gene. This latter observation suggests that actomyosin interactions exacerbate the structural or functional defect resulting from the troponin-I mutation.  相似文献   

11.
Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin "hinge" region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial "melting" of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was approximately 5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus, alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.  相似文献   

12.
Wang B  Sullivan KM  Beckingham K 《Genetics》2003,165(3):1255-1268
We have studied lethal mutations in the single calmodulin gene (Cam) of Drosophila to gain insight into the in vivo functions of this important calcium sensor. As a result of maternal calmodulin (CaM) in the mature egg, lethality is delayed until the postembryonic stages. Prior to death in the first larval instar, Cam nulls show a striking behavioral abnormality (spontaneous backward movement) whereas a mutation, Cam7, that results in a single amino acid change (V91G) produces a very different phenotype: short indented pupal cases and pupal death with head eversion defects. We show here that the null behavioral phenotype originates in the nervous system and involves a CaM function that requires calcium binding to all four sites of the protein. Further, backward movement can be induced in hypomorphic mutants by exposure to high light levels. In contrast, the V91G mutation specifically affects the musculature and causes abnormal calcium release in response to depolarization of the muscles. Genetic interaction studies suggest that failed regulation of the muscle calcium release channel, the ryanodine receptor, is the major defect underlying the Cam7 phenotype.  相似文献   

13.
We have previously established that the single myb gene in Drosophila melanogaster, Dm myb, which is related to the proto-oncogene Myb, is required for the G2/M transition of the cell cycle and for suppression of endoreduplication in pupal wing cells. We now report that studies of the abdominal phenotype in loss-of-function Dm myb mutants reveal additional roles for Dm myb in the cell cycle, specifically in mitosis. Abdominal epidermal cells that are mutant for Dm myb proliferate more slowly than wild-type controls throughout pupation, with particularly sluggish progression through the early stages of mitosis. Abnormal mitoses associated with multiple functional centrosomes, unequal chromosome segregation, formation of micronuclei, and/or failure to complete cell division are common in the later cell cycles of mutant cells. Resulting nuclei are often aneuploid and/or polyploid. Similar defects have also been observed in loss-of-function mutations of the tumor suppressor genes p53, Brca1 and Brca2. These data demonstrate that in abdominal epidermal cells, Dm myb is required to sustain the appropriate rate of proliferation, to suppress formation of supernumerary centrosomes, and to maintain genomic integrity.  相似文献   

14.
15.
16.
To elucidate the function of metazoan B-type lamins during development, new null mutations of the Drosophila B-type lamin gene, lamDm(0), were analyzed in parallel with the misg(sz18) mutation, a lamDm(0) allele reported previously. Although in all these mutants, lamin Dm(0) protein was undetectable in neuroblasts and imaginal disc cells from the second instar larval stage onward, cells continued to proliferate. In contrast to the embryonic lethality of another Drosophila lamDm(0) allele, lam(PM15), reported previously, lethality did not occur until late pupal stages. Chromosomal structure and the overall nuclear shape remained normal even at these late pupal stages, although obviously abnormal nuclear pore complex distribution was observed concomitant with the loss of lamin Dm(0) protein. Compensating expression of lamin C was not induced in the absence of lamin Dm(0). Thus, no lamin-containing nuclear structures were found in proliferating larval neuroblasts. We did find that developmental abnormalities appeared in specific organs during the late pupal stage, preceding lethality. Surprisingly, coordinated size increase (hypertrophy) of the ventriculus was observed accompanied by cell division and muscle layer formation. Hypertrophy of the ventriculus correlated with a decrease in ecdysteroid hormone receptor B1 (EcRB1) protein, and furthermore could be suppressed by a heat-inducible EcRB1 transgene. In contrast, both gonadal and CNS tissues exhibited underdevelopment.  相似文献   

17.
Development of the indirect flight muscles of Drosophila.   总被引:6,自引:0,他引:6  
We have followed the pupal development of the indirect flight muscles (IFMs) of Drosophila melanogaster. At the onset of metamorphosis larval muscles start to histolyze, with the exception of a specific set of thoracic muscles. Myoblasts surround these persisting larval muscles and begin the formation of one group of adult indirect flight muscles, the dorsal longitudinal muscles. We show that the other group of indirect flight muscles, the dorsoventral muscles, develops simultaneously but without the use of larval templates. By morphological criteria and by patterns of specific gene expression, our experiments define events in IFM development.  相似文献   

18.
19.
Aedes aegypti Act4 is a paralog of the Drosophila melanogaster indirect flight muscle actin gene Act88F. Act88F has been shown to be haploinsufficient for flight in both males and females (amorphic mutants are dominant). Whereas Act88F is expressed in indirect flight muscles of both males and females, expression of Act4 is substantially female-specific. We therefore used CRISPR/Cas9 and homology directed repair to examine the phenotype of Act4 mutants in two Culicine mosquitoes, Aedes aegypti and Culex quinquefasciatus. A screen for dominant female-flightless mutants in Cx. quinquefasciatus identified one such mutant associated with a six base pair deletion in the CxAct4 coding region. A similar screen in Ae. aegypti identified no dominant mutants. Disruption of the AeAct4 gene by homology-dependent insertion of a fluorescent protein marker cassette gave a recessive female-flightless phenotype in Ae. aegypti. Reproducing the six-base deletion from Cx. quinquefasciatus in Ae. aegypti using oligo-directed mutagenesis generated dominant female-flightless mutants and identified additional dominant female-flightless mutants with other in-frame insertions or deletions. Our data indicate that loss of function mutations in the AeAct4 gene are recessive but that short in-frame deletions produce dominant-negative versions of the AeAct4 protein that interfere with flight muscle function. This makes Act4 an interesting candidate for genetic control methods, particularly population-suppression gene drives targeting female viability/fertility.  相似文献   

20.
We integratively assessed the function of alternative versions of a region near the N terminus of Drosophila muscle myosin heavy chain (encoded by exon 3a or 3b). We exchanged the alternative exon 3 regions between an embryonic isoform and the indirect flight muscle isoform. Each chimeric myosin was expressed in Drosophila indirect flight muscle, in the absence of other myosin isoforms, allowing for purified protein analysis and whole organism locomotory studies. The flight muscle isoform generates higher in vitro actin sliding velocity and solution ATPase rates than the embryonic isoform. Exchanging the embryonic exon 3 region into the flight muscle isoform decreased ATPase rates to embryonic levels but did not affect actin sliding velocity or flight muscle ultrastructure. Interestingly, this swap only slightly impaired flight ability. Exchanging the flight muscle-specific exon 3 region into the embryonic isoform increased actin sliding velocity 3-fold and improved indirect flight muscle ultrastructure integrity but failed to rescue the flightless phenotype of flies expressing embryonic myosin. These results suggest that the two structural versions of the exon 3 domain independently influence the kinetics of at least two steps of the actomyosin cross-bridge cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号