首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
It has been established that the large conductance Ca2+-activated K+ channel contains two types of high-affinity Ca2+ binding sites, termed the Ca2+ bowl and the RCK1 site. The affinities of these sites, and how they change as the channel opens, is still a subject of some debate. Previous estimates of these affinities have relied on fitting a series of conductance–voltage relations determined over a series of Ca2+ concentrations with models of channel gating that include both voltage sensing and Ca2+ binding. This approach requires that some model of voltage sensing be chosen, and differences in the choice of voltage-sensing model may underlie the different estimates that have been produced. Here, to better determine these affinities we have measured Ca2+ dose–response curves of channel activity at constant voltage for the wild-type mSlo channel (minus its low-affinity Ca2+ binding site) and for channels that have had one or the other Ca2+ binding site disabled via mutation. To accurately determine these dose–response curves we have used a series of 22 Ca2+ concentrations, and we have used unitary current recordings, coupled with changes in channel expression level, to measure open probability over five orders of magnitude. Our results indicate that at −80 mV the Ca2+ bowl has higher affinity for Ca2+ than does the RCK1 site in both the opened and closed conformations of the channel, and that the binding of Ca2+ to the RCK1 site is voltage dependent, whereas at the Ca2+ bowl it is not.  相似文献   

2.
Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels is an essential trigger for lymphocyte activation and proliferation. The recent identification of Orai1 as a key CRAC channel pore subunit paves the way for understanding the molecular basis of Ca2+ selectivity, ion permeation, and regulation of CRAC channels. Previous Orai1 mutagenesis studies have indicated that a set of conserved acidic amino acids in trans membrane domains I and III and in the I–II loop (E106, E190, D110, D112, D114) are essential for the CRAC channel's high Ca2+ selectivity. To further dissect the contribution of Orai1 domains important for ion permeation and channel gating, we examined the role of these conserved acidic residues on pore geometry, properties of Ca2+ block, and channel regulation by Ca2+. We find that alteration of the acidic residues lowers Ca2+ selectivity and results in striking increases in Cs+ permeation. This is likely the result of enlargement of the unusually narrow pore of the CRAC channel, thus relieving steric hindrance for Cs+ permeation. Ca2+ binding to the selectivity filter appears to be primarily affected by changes in the apparent on-rate, consistent with a rate-limiting barrier for Ca2+ binding. Unexpectedly, the mutations diminish Ca2+-mediated fast inactivation, a key mode of CRAC channel regulation. The decrease in fast inactivation in the mutant channels correlates with the decrease in Ca2+ selectivity, increase in Cs+ permeability, and enlargement of the pore. We propose that the structural elements involved in ion permeation overlap with those involved in the gating of CRAC channels.  相似文献   

3.
Guo Z  Lv C  Yi H  Xiong Y  Wu Y  Li W  Xu T  Ding J 《Biophysical journal》2008,94(9):3714-3725
Single large-conductance calcium-activated K+ (BK) channels encoded by the mSlo gene usually have synchronous gating, but a Drosophila dSlo (A2/C2/E2/G5/10) splice variant (dSlo1A) exhibits very flickery openings. To probe this difference in gating, we constructed a mutant I323T. This channel exhibits four subconductance levels similar to those of dSlo1A. Rectification of the single-channel current-voltage relation of I323T decreased as [Ca2+ ]in increased from 10 to 300 μM. Mutagenesis suggests that the hydrophobicity of the residue at the position is important for the wild-type gating; i.e., increasing hydrophobicity prolongs open duration. Molecular dynamics simulation suggests that four hydrophobic pore-lining residues at position 323 of mSlo act cooperatively in a “shutter-like” mechanism gating the permeation of K+ ions. Rate-equilibrium free energy relations analysis shows that the four I323 residues in an mSlo channel have a conformation 65% similar to the closed conformation during gating. Based on these observations, we suggest that the appearance of rectification and substates of BK-type channels arise from a reduction of the cooperativity among these four residues and a lower probability of being open.  相似文献   

4.
Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.  相似文献   

5.
Sustained elevation of intracellular calcium by Ca2+ release–activated Ca2+ channels is required for lymphocyte activation. Sustained Ca2+ entry requires endoplasmic reticulum (ER) Ca2+ depletion and prolonged activation of inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ release channels. However, a major isoform in lymphocyte ER, IP3R1, is inhibited by elevated levels of cytosolic Ca2+, and the mechanism that enables the prolonged activation of IP3R1 required for lymphocyte activation is unclear. We show that IP3R1 binds to the scaffolding protein linker of activated T cells and colocalizes with the T cell receptor during activation, resulting in persistent phosphorylation of IP3R1 at Tyr353. This phosphorylation increases the sensitivity of the channel to activation by IP3 and renders the channel less sensitive to Ca2+-induced inactivation. Expression of a mutant IP3R1-Y353F channel in lymphocytes causes defective Ca2+ signaling and decreased nuclear factor of activated T cells activation. Thus, tyrosine phosphorylation of IP3R1-Y353 may have an important function in maintaining elevated cytosolic Ca2+ levels during lymphocyte activation.  相似文献   

6.
In this and an accompanying report we describe two steps, single-channel imaging and channel immobilization, necessary for using optical imaging to analyze the function of ryanodine receptor (RyR) channels reconstituted in lipid bilayers. An optical bilayer system capable of laser scanning confocal imaging of fluo-3 fluorescence due to Ca2+ flux through single RyR2 channels and simultaneous recording of single channel currents was developed. A voltage command protocol was devised in which the amplitude, time course, shape, and hence the quantity of Ca2+ flux through a single RyR2 channel is controlled solely by the voltage imposed across the bilayer. Using this system, the voltage command protocol, and concentrations of Ca2+ (25–50 mM) that result in saturating RyR2 Ca2+ currents, proportional fluo-3 fluorescence was recorded simultaneously with Ca2+ currents having amplitudes of 0.25–14 pA. Ca2+ sparks, similar to those obtained with conventional microscope-based laser scanning confocal systems, were imaged in mouse ventricular cardiomyocytes using the optical bilayer system. The utility of the optical bilayer for systematic investigation of how cellular factors extrinsic to the RyR2 channel, such as Ca2+ buffers and diffusion, alter fluo-3 fluorescent responses to RyR2 Ca2+ currents, and for addressing other current research questions is discussed.  相似文献   

7.
Glucagon, secreted from pancreatic islet α cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring β cells, or to an intrinsic glucose sensing by the α cells themselves. We examined hormone secretion and Ca2+ responses of α and β cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn2+ signalling was blocked, but was reversed by low concentrations (1–20 μM) of the ATP-sensitive K+ (KATP) channel opener diazoxide, which had no effect on insulin release or β cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 μM). Higher diazoxide concentrations (≥30 μM) decreased glucagon and insulin secretion, and α- and β-cell Ca2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 μM) stimulated glucagon secretion, whereas high concentrations (>10 μM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na+ (TTX) and N-type Ca2+ channels (ω-conotoxin), but not L-type Ca2+ channels (nifedipine), prevented glucagon secretion. Both the N-type Ca2+ channels and α-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an α-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.  相似文献   

8.
TRPC3 (or Htrp3) is a human member of the trp family of Ca2+-permeable cation channels. Since expression of TRPC3 cDNA results in markedly enhanced Ca2+ influx in response to stimulation of membrane receptors linked to phospholipase C (Zhu, X., J. Meisheng, M. Peyton, G. Bouley, R. Hurst, E. Stefani, and L. Birnbaumer. 1996. Cell. 85:661–671), we tested whether TRPC3 might represent a Ca2+ entry pathway activated as a consequence of depletion of intracellular calcium stores. CHO cells expressing TRPC3 after intranuclear injection of cDNA coding for TRPC3 were identified by fluorescence from green fluorescent protein. Expression of TRPC3 produced cation currents with little selectivity for Ca2+ over Na+. These currents were constitutively active, not enhanced by depletion of calcium stores with inositol-1,4,5-trisphosphate or thapsigargin, and attenuated by strong intracellular Ca2+ buffering. Ionomycin led to profound increases of currents, but this effect was strictly dependent on the presence of extracellular Ca2+. Likewise, infusion of Ca2+ into cell through the patch pipette increased TRPC3 currents. Therefore, TRPC3 is stimulated by a Ca2+-dependent mechanism. Studies on TRPC3 in inside-out patches showed cation-selective channels with 60-pS conductance and short (<2 ms) mean open times. Application of ionomycin to cells increased channel activity in cell-attached patches. Increasing the Ca2+ concentration on the cytosolic side of inside-out patches (from 0 to 1 and 30 μM), however, failed to stimulate channel activity, even in the presence of calmodulin (0.2 μM). We conclude that TRPC3 codes for a Ca2+-permeable channel that supports Ca2+-induced Ca2+-entry but should not be considered store operated.  相似文献   

9.
We have studied the modulation of gating properties of the Ca2+-permeable, cation channel TRPV4 transiently expressed in HEK293 cells. The phorbol ester 4αPDD transiently activated a current through TRPV4 in the presence of extracellular Ca2+. Increasing the concentration of extracellular Ca2+ ([Ca2+]e) reduced the current amplitude and accelerated its decay. This decay was dramatically delayed in the absence of [Ca2+]e. It was also much slower in the presence of [Ca2+]e in a mutant channel, obtained by a point mutation in the 6th transmembrane domain, F707A. Mutant channels, containing a single mutation in the C-terminus of TRPV4 (E797), were constitutively open. In conclusion, gating of the 4αPDD-activated TRPV4 channel depends on both extra- and intracellular Ca2+, and is modulated by mutations of single amino acid residues in the 6th transmembrane domain and the C-terminus of the TRPV4 protein.  相似文献   

10.
Mice over-expressing the α1−subunit (pore) of the L-type Ca2+ channel (α1CTG) by 4months (mo) of age exhibit an enlarged heart, hypertrophied myocytes, increased Ca2+ current and Ca2+ transient amplitude, but a normal SR Ca2+ load. With advancing age (8–11 mo), some mice demonstrate advanced hypertrophy but are not in congestive heart failure (NFTG), while others evolve to frank dilated congestive heart failure (FTG). We demonstrate that older NFTG myocytes exhibit a hypercontractile state over a wide range of stimulation frequencies, but maintain a normal SR Ca2+ load compared to age matched non-transgenic (NTG) myocytes. However, at high stimulation rates (2–4 Hz) signs of diastolic contractile failure appear in NFTG cells. The evolution of frank congestive failure in FTG is accompanied by a further increase in heart mass and myocyte size, and phospholamban and ryanodine receptor protein levels and phosphorylation become reduced. In FTG, the SR Ca2+ load increases and Ca2+ release following excitation, increases further. An enhanced NCX function in FTG, as reflected by an accelerated relaxation of the caffeine-induced Ca2+ transient, is insufficient to maintain a normal diastolic Ca2+ during high rates of stimulation. Although a high SR Ca2+ release following excitation is maintained, the hypercontractile state is not maintained at high rates of stimulation, and signs of both systolic and diastolic contractile failure appear. Thus, the dilated cardiomyopathy that evolves in this mouse model exhibits signs of both systolic and diastolic failure, but not a deficient SR Ca2+ loading or release, as occurs in some other cardiomyopathic models.  相似文献   

11.
Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca2+, Sr2+, and Ba2+, and discovered that Mg2+ competes with Ca2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore–as revealed by the permeability ratios of these anions–appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.  相似文献   

12.
Increasing evidence suggests that changes in cytosolic Ca2+ levels and phosphorylation play important roles in the regulation of stomatal aperture and as ion transporters of guard cells. However, protein kinases responsible for Ca2+ signaling in guard cells remain to be identified. Using biochemical approaches, we have identified a Ca2+-dependent protein kinase with a calmodulin-like domain (CDPK) in guard cell protoplasts of Vicia faba. Both autophosphorylation and catalytic activity of CDPK are Ca2+ dependent. CDPK exhibits a Ca2+-induced electrophoretic mobility shift and its Ca2+-dependent catalytic activity can be inhibited by the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. Antibodies to soybean CDPKα cross-react with CDPK. Micromolar Ca2+ concentrations stimulate phosphorylation of several proteins from guard cells; cyclosporin A, a specific inhibitor of the Ca2+-dependent protein phosphatase calcineurin enhances the Ca2+-dependent phosphorylation of several soluble proteins. CDPK from guard cells phosphorylates the K+ channel KAT1 protein in a Ca2+-dependent manner. These results suggest that CDPK may be an important component of Ca2+ signaling in guard cells.  相似文献   

13.
Ryanodine receptor type 1 (RyR1) releases Ca2+ from intracellular stores upon nerve impulse to trigger skeletal muscle contraction. Effector binding at the cytoplasmic domain tightly controls gating of the pore domain of RyR1 to release Ca2+. However, the molecular mechanism that links effector binding to channel gating is unknown due to lack of structural data. Here, we used a combination of computational and electrophysiological methods and cryo-EM densities to generate structural models of the open and closed states of RyR1. Using our structural models, we identified an interface between the pore-lining helix (Tyr-4912–Glu-4948) and a linker helix (Val-4830–Val-4841) that lies parallel to the cytoplasmic membrane leaflet. To test the hypothesis that this interface controls RyR1 gating, we designed mutations in the linker helix to stabilize either the open (V4830W and T4840W) or closed (H4832W and G4834W) state and validated them using single channel experiments. To further confirm this interface, we designed mutations in the pore-lining helix to stabilize the closed state (Q4947N, Q4947T, and Q4947S), which we also validated using single channel experiments. The channel conductance and selectivity of the mutations that we designed in the linker and pore-lining helices were indistinguishable from those of WT RyR1, demonstrating our ability to modulate RyR1 gating without affecting ion permeation. Our integrated computational and experimental approach significantly advances the understanding of the structure and function of an unusually large ion channel.  相似文献   

14.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

15.
The term excitation-coupled Ca2+ entry (ECCE) designates the entry of extracellular Ca2+ into skeletal muscle cells, which occurs in response to prolonged depolarization or pulse trains and depends on the presence of both the 1,4-dihydropyridine receptor (DHPR) in the plasma membrane and the type 1 ryanodine receptor in the sarcoplasmic reticulum (SR) membrane. The ECCE pathway is blocked by pharmacological agents that also block store-operated Ca2+ entry, is inhibited by dantrolene, is relatively insensitive to the DHP antagonist nifedipine (1 μM), and is permeable to Mn2+. Here, we have examined the effects of these agents on the L-type Ca2+ current conducted via the DHPR. We found that the nonspecific cation channel antagonists (2-APB, SKF 96356, La3+, and Gd3+) and dantrolene all inhibited the L-type Ca2+ current. In addition, complete (>97%) block of the L-type current required concentrations of nifedipine >10 μM. Like ECCE, the L-type Ca2+ channel displays permeability to Mn2+ in the absence of external Ca2+ and produces a Ca2+ current that persists during prolonged (∼10-second) depolarization. This current appears to contribute to the Ca2+ transient observed during prolonged KCl depolarization of intact myotubes because (1) the transients in normal myotubes decayed more rapidly in the absence of external Ca2+; (2) the transients in dysgenic myotubes expressing SkEIIIK (a DHPR α1S pore mutant thought to conduct only monovalent cations) had a time course like that of normal myotubes in Ca2+-free solution and were unaffected by Ca2+ removal; and (3) after block of SR Ca2+ release by 200 μM ryanodine, normal myotubes still displayed a large Ca2+ transient, whereas no transient was detectable in SkEIIIK-expressing dysgenic myotubes. Collectively, these results indicate that the skeletal muscle L-type channel is a major contributor to the Ca2+ entry attributed to ECCE.  相似文献   

16.
A few membrane vesicle trafficking (SNARE) proteins in plants are associated with signaling and transmembrane ion transport, including control of plasma membrane ion channels. Vesicle traffic contributes to the population of ion channels at the plasma membrane. Nonetheless, it is unclear whether these SNAREs also interact directly to affect channel gating and, if so, what functional impact this might have on the plant. Here, we report that the Arabidopsis thaliana SNARE SYP121 binds to KC1, a regulatory K+ channel subunit that assembles with different inward-rectifying K+ channels to affect their activities. We demonstrate that SYP121 interacts preferentially with KC1 over other Kv-like K+ channel subunits and that KC1 interacts specifically with SYP121 but not with its closest structural and functional homolog SYP122 nor with another related SNARE SYP111. SYP121 promoted gating of the inward-rectifying K+ channel AKT1 but only when heterologously coexpressed with KC1. Mutation in any one of the three genes, SYP121, KC1, and AKT1, selectively suppressed the inward-rectifying K+ current in Arabidopsis root epidermal protoplasts as well as K+ acquisition and growth in seedlings when channel-mediated K+ uptake was limiting. That SYP121 should be important for gating of a K+ channel and its role in inorganic mineral nutrition demonstrates an unexpected role for SNARE–ion channel interactions, apparently divorced from signaling and vesicle traffic. Instead, it suggests a role in regulating K+ uptake coordinately with membrane expansion for cell growth.  相似文献   

17.
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.  相似文献   

18.

Background

Thromboxane A2 (TxA2)-induced smooth muscle contraction has been implicated in cardiovascular, renal and respiratory diseases. This contraction can be partly attributed to TxA2-induced Ca2+ influx, which resulted in vascular contraction via Ca2+-calmodulin-MLCK pathway. This study aims to identify the channels that mediate TxA2-induced Ca2+ influx in vascular smooth muscle cells.

Methodology/Principal Findings

Application of U-46619, a thromboxane A2 mimic, resulted in a constriction in endothelium-denuded small mesenteric artery segments. The constriction relies on the presence of extracellular Ca2+, because removal of extracellular Ca2+ abolished the constriction. This constriction was partially inhibited by an L-type Ca2+ channel inhibitor nifedipine (0.5–1 µM). The remaining component was inhibited by L-cis-diltiazem, a selective inhibitor for CNG channels, in a dose-dependent manner. Another CNG channel blocker LY83583 [6-(phenylamino)-5,8-quinolinedione] had similar effect. In the primary cultured smooth muscle cells derived from rat aorta, application of U46619 (100 nM) induced a rise in cytosolic Ca2+ ([Ca2+]i), which was inhibited by L-cis-diltiazem. Immunoblot experiments confirmed the presence of CNGA2 protein in vascular smooth muscle cells.

Conclusions/Significance

These data suggest a functional role of CNG channels in U-46619-induced Ca2+ influx and contraction of smooth muscle cells.  相似文献   

19.
The potassium conductance of the basolateral membrane (BLM) of proximal tubule cells is a critical regulator of transport since it is the major determinant of the negative cell membrane potential and is necessary for pump-leak coupling to the Na+,K+-ATPase pump. Despite this pivotal physiological role, the properties of this conductance have been incompletely characterized, in part due to difficulty gaining access to the BLM. We have investigated the properties of this BLM K+ conductance in dissociated, polarized Ambystoma proximal tubule cells. Nearly all seals made on Ambystoma cells contained inward rectifier K+ channels (γslope, in = 24.5 ± 0.6 pS, γchord, out = 3.7 ± 0.4 pS). The rectification is mediated in part by internal Mg2+. The open probability of the channel increases modestly with hyperpolarization. The inward conducting properties are described by a saturating binding–unbinding model. The channel conducts Tl+ and K+, but there is no significant conductance for Na+, Rb+, Cs+, Li+, NH4+, or Cl. The channel is inhibited by barium and the sulfonylurea agent glibenclamide, but not by tetraethylammonium. Channel rundown typically occurs in the absence of ATP, but cytosolic addition of 0.2 mM ATP (or any hydrolyzable nucleoside triphosphate) sustains channel activity indefinitely. Phosphorylation processes alone fail to sustain channel activity. Higher doses of ATP (or other nucleoside triphosphates) reversibly inhibit the channel. The K+ channel opener diazoxide opens the channel in the presence of 0.2 mM ATP, but does not alleviate the inhibition of millimolar doses of ATP. We conclude that this K+ channel is the major ATP-sensitive basolateral K+ conductance in the proximal tubule.  相似文献   

20.
Transient receptor potential channels meet phosphoinositides   总被引:5,自引:0,他引:5  
Nilius B  Owsianik G  Voets T 《The EMBO journal》2008,27(21):2809-2816
Transient receptor potential (TRP) cation channels are unique cellular sensors that are involved in multiple cellular functions, ranging from transduction of sensory signals to the regulation of Ca2+ and Mg2+ homoeostasis. Malfunctioning of TRP channels is now recognized as the cause of several hereditary and acquired human diseases. At the time of cloning of the first Drosophila TRP channel, a close connection between gating and phosphatidylinositol phosphates (PIPs) was already recognized. In this review, we summarize current knowledge about the mechanisms of interaction between TRP channels and PIPs, and discuss the possible functional implications of TRP–PIP interactions to human physiology and pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号