首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma‐aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node.  相似文献   

2.
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.  相似文献   

3.
GABA is a non-protein amino acid that accumulates rapidly in plant tissues in response to biotic and abiotic stress. There have been a number of suggestions as to the role that GABA might play in plants, ranging from a straightforward involvement in N metabolism to a signal mediating plant-animal and plant-microbe interactions. It has also been several proposed that it might function as an intracellular signalling molecule in plants. Here, we discuss recent evidence that plant cells respond at the molecular level to the presence of applied GABA. We argue that these data might serve as the basis for investigating the possible signalling role for GABA in plant development and stress responses in more detail.Key Words: 14-3-3 proteins, GABA, signalling, gene expression, stress, senescenceGABA (γ-aminobutyric acid), which comprises a significant fraction of the free amino acid pool in plant cells, was first identified in potato tubers over half a century ago, but its functions remained obscure for many years. In animal systems, GABA is present at high levels in the brain where it acts as an important neurotransmitter. GABA is synthesised in a pathway known as the GABA shunt, which operates not only in the animals, but in bacteria, fungi and plants too.1,2 The function of GABA in plants has attracted renewed attention in the last decade following the discovery that intracellular and/or extracellular GABA concentrations increase rapidly in response to a range of stresses. Subsequently, a number of possible roles for GABA and the GABA shunt in plants have been suggested.1,2 These include acting as a buffering mechanism in C and N metabolism, cytosolic pH regulation, protection against oxidative stress and defence against herbivorous pests. It has been proposed recently that one common function of GABA might be to mediate interactions between plants and other organisms, including bacterial and fungal pathogens, nematodes and insect pests.3 On the other hand, because of the rapid increases in GABA concentration in response to stress, it has sometimes been inferred that GABA might act as an intracellular signalling molecule in plants. However, few studies have adopted molecular approaches to GABA function, and molecular responses are largely unknown.  相似文献   

4.
5.
GABA is the major inhibitory neurotransmitter in the nervous system. It is also released by the insulin-producing beta-cells, providing them with a potential paracrine regulator. Because glucose was found to inhibit GABA release, we investigated whether extracellular GABA can serve as a marker for glucose-induced mitochondrial activity and thus for the functional state of beta-cells. GABA release by rat and human beta-cells was shown to reflect net GABA production, varying with the functional state of the cells. Net GABA production is the result of GABA formation through glutamate decarboxylase (GAD) and GABA catabolism involving a GABA-transferase (GABA-T)-mediated shunt to the TCA cycle. GABA-T exhibits K(m) values for GABA (1.25 mM) and for alpha-ketoglutarate (alpha-KG; 0.49 mM) that are, respectively, similar to and lower than those in brain. The GABA-T inhibitor gamma-vinyl GABA was used to assess the relative contribution of GABA formation and catabolism to net production and release. The nutrient status of the beta-cells was found to regulate both processes. Glutamine dose-dependently increased GAD-mediated formation of GABA, whereas glucose metabolism shunts part of this GABA to mitochondrial catabolism, involving alpha-KG-induced activation of GABA-T. In absence of extracellular glutamine, glucose also contributed to GABA formation through aminotransferase generation of glutamate from alpha-KG; this stimulatory effect increased GABA release only when GABA-T activity was suppressed. We conclude that GABA release from beta-cells is regulated by glutamine and glucose. Glucose inhibits glutamine-driven GABA formation and release through increasing GABA-T shunt activity by its cellular metabolism. Our data indicate that GABA release by beta-cells can be used to monitor their metabolic responsiveness to glucose irrespective of their insulin-secretory activity.  相似文献   

6.
While the proposal that γ-aminobutyric acid (GABA) acts a signal in plants is decades old, a signaling mode of action for plant GABA has been unveiled only relatively recently. Here, we review the recent research that demonstrates how GABA regulates anion transport through aluminum-activated malate transporters (ALMTs) and speculation that GABA also targets other proteins. The ALMT family of anion channels modulates multiple physiological processes in plants, with many members still to be characterized, opening up the possibility that GABA has broad regulatory roles in plants. We focus on the role of GABA in regulating pollen tube growth and stomatal pore aperture, and we speculate on its role in long-distance signaling and how it might be involved in cross talk with hormonal signals. We show that in barley (Hordeum vulgare), guard cell opening is regulated by GABA, as it is in Arabidopsis (Arabidopsis thaliana), to regulate water use efficiency, which impacts drought tolerance. We also discuss the links between glutamate and GABA in generating signals in plants, particularly related to pollen tube growth, wounding, and long-distance electrical signaling, and explore potential interactions of GABA signals with hormones, such as abscisic acid, jasmonic acid, and ethylene. We conclude by postulating that GABA encodes a signal that links plant primary metabolism to physiological status to fine tune plant responses to the environment.

γ-Aminobutyric acid (GABA) encodes a plant signal that links primary metabolism to physiological status to fine tune plant responses to the environment.  相似文献   

7.
Accumulation of GABA and a concurrent block in the Krebs cycle suggest a functional GABA bypass in the acidogenic Aspergillus niger. Apart from the demonstration of enzyme machinery required, a direct measurement of flux through this glutamate decarboxylation loop was attempted. The distribution of carbon from glucose and glutamate was studied using A. niger mycelia grown on different media. The uptake and incorporation of (14)C label into organic acids and amino acids was followed by paper chromatography. Flow of label from glucose into citrate, glutamate and GABA increased in cells harvested at later stages of acidogenic growth. Very little citrate was derived from glutamate while ten times more label reached GABA from labeled glutamate. Radioactivity from L-[U-(14)C]glutamate and not from L-[1-(14)C]glutamate was recovered in GABA. This demonstrated that alpha-decarboxylation of L-glutamate was the source of GABA. Unless grown on GABA, A. niger mycelia did not take up externally supplied GABA. A direct measure of GABA shunt flux was thus not feasible. Therefore a combination of metabolite balance technique and the kinetic approach was applied to evaluate flux from glutamate to succinate in normal and acidogenic A. niger. The flux relative to TCA cycle was estimated by using uptake rate for radiolabeled glutamate, rate of accumulation of certain metabolites and the reactions of GABA metabolism. The analysis indicated that GABA shunt is operative in A. niger and its operation is enhanced during acidogenic growth of the fungus. This is the first report of an estimation of the flux through GABA shunt in a fungus.  相似文献   

8.
Abstract: We investigated the activity of the cerebral GABA shunt relative to the overall cerebral tricarboxylic acid (TCA) cycle and the importance of the GABA shunt versus 2-oxoglutarate dehydrogenase for the conversion of 2-oxoglutarate into succinate in GABAergic neurons. Awake mice were dosed with [1-13C]glucose, and brain extracts were analyzed by 13C NMR spectroscopy. The percent enrichments of GABA C-2 and glutamate C-4 were the same: 5.0 ± 1.6 and 5.1 ± 0.2%, respectively (mean ± SD). This, together with previous data, indicates that the flux through the GABA shunt relative to the overall cerebral TCA cycle flux equals the GABA/glutamate pool size ratio, which in the mouse is 17%. It has previously been shown that under the experimental conditions used in this study, the 13C labeling of aspartate from [1-13C]glucose specifically reflects the metabolic activity of GABAergic neurons. In the present study, the reduction in the formation of [13C]aspartate during inhibition of the GABA shunt by γ-vinyl-GABA indicated that not more than half the flux from 2-oxoglutarate to succinate in GABAergic neurons goes via the GABA shunt. Therefore, because fluxes through the GABA shunt and 2-oxoglutarate dehydrogenase in GABAergic neurons are approximately the same, the TCA cycle activity of GABAergic neurons could account for one-third of the overall cerebral TCA cycle activity in the mouse. Treatment with γ-vinyl-GABA, which increased GABA levels dramatically, caused changes in the 13C labeling of glutamate and glutamine, which indicated a reduction in the transfer of glutamate from neurons to glia, implying reduced glutamatergic neurotransmission. In the most severely affected animals these alterations were associated with convulsions.  相似文献   

9.
10.
Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system.  相似文献   

11.
Gamma-amino butyric acid (GABA) is a nonprotein amino acid found in a wide range of organisms including plants. Several studies have shown that GABA plays different roles in plant metabolism including carbon–nitrogen metabolism, energy balance, signaling and development. It has been suggested that the occurrence of GABA and the enzymes related to GABA biosynthesis in prokaryotes and eukaryotes may be important in evolution and diversification. However, studies of GABA biosynthesis and GABA levels in an evolutionary context are restricted to sequenced plant genomes. In this study we aimed to compare the activities of GDH and GAD enzymes and total nitrogen, and the contents of total soluble protein, succinate, glutamate, proline and GABA in plants from different phylogenetic levels including Ulva lactuca, Pseudevernia furfuracea, Nephrolepsis exaltata, Ginkgo biloba, Pinus pinea, Magnolia grandiflora, Nymphaea alba, Urtica dioica, Portulaca oleraceae, Malva sylvestris, Rosa canina, Lavandula stoechas, Washingtonia filifera, Avena barbata and Iris kaempferi. The activities of GAD and GDH enzymes differed according to the species and were not always parallel to GABA levels. The discrepancy in the contents of succinate and GABA between higher and primitive plants was also prominent. Glutamate levels were high with a few exceptions and proline contents were at similar low values as compared to other amino acids. Our results support the hypothesis that the GABA shunt plays a key role in carbon and nitrogen partitioning via linking amino acid metabolism and the tricarboxylic acid cycle which is essential for higher plant species.  相似文献   

12.
Liu C  Hao F  Hu J  Zhang W  Wan L  Zhu L  Tang H  He G 《Journal of proteome research》2010,9(12):6774-6785
Brown planthopper (BPH) is a notorious pest of rice plants attacking leaf sheaths and seriously affecting global rice production. However, how rice plants respond against BPH remains to be fully understood. To understand systems metabolic responses of rice plants to BPH infestation, we analyzed BPH-induced metabolic changes in leaf sheaths of both BPH-susceptible and resistant rice varieties using NMR-based metabonomics and measured expression changes of 10 relevant genes using quantitative real-time PCR. Our results showed that rice metabonome was dominated by more than 30 metabolites including sugars, organic acids, amino acids, and choline metabolites. BPH infestation caused profound metabolic changes for both BPH-susceptible and resistant rice plants involving transamination, GABA shunt, TCA cycle, gluconeogenesis/glycolysis, pentose phosphate pathway, and secondary metabolisms. BPH infestation caused more drastic overall metabolic changes for BPH-susceptible variety and more marked up-regulations for key genes regulating GABA shunt and biosynthesis of secondary metabolites for BPH-resistant variety. Such observations indicated that activation of GABA shunt and shikimate-mediated secondary metabolisms was vital for rice plants to resist BPH infestation. These findings filled the gap of our understandings in the mechanistic aspects of BPH resistance for rice plants and demonstrated the combined metabonomic and qRT-PCR analysis as an effective approach for understanding plant-herbivore interactions.  相似文献   

13.
Diminished energy metabolism and reduced activity of brain α-ketoglutarate dehydrogenase complex (KGDHC) occur in a number of neurodegenerative diseases. The relation between diminished KGDHC activity and altered energy metabolism is unknown. The present study tested whether a reduction in the KGDHC activity would alter cellular metabolism by comparing metabolism of [U-13C]glucose in a human embryonic kidney cell line (E2k100) to one in which the KGDHC activity was about 70% of control (E2k67). After a 2 h incubation of the cells with [U-13C]glucose, the E2k67 cells showed a greater increase in 13C labeling of alanine compared with the E2k100 cells. This suggested an increase in glycolysis. Furthermore, an increase in labeled lactate after 12 h incubation supported the suggestion of an increased glycolysis in the E2k67 cells. Increased GABA shunt in the E2k67 cells was indicated by increased 13C labeling of GABA at both 2 and 12 h compared with the control cells. GABA concentration as determined by HPLC was also increased in the E2k67 cells compared with the control cells. However, the GABA shunt was not sufficient to normalize metabolism in the E2k67 cells compared with control at 2 or 12 h. However, by 24 h metabolism had normalized (i.e. labeling was similar in E2k67 and E2k100). Thus, the data are consistent with an enhanced glycolysis and GABA shunt in response to a mild reduction in KGDHC. Our findings indicate that a mild change in KGDHC activity can lead to large changes in metabolism. The changes may maintain normal energy metabolism but make the cells more vulnerable to perturbations such as occur with oxidants.  相似文献   

14.
γ‐Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABATs) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus‐induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABATs (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs‐ and SlGABATs‐silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH‐silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ‐hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ‐hydroxybutyrate and subsequent ROS accumulation under salt stress.  相似文献   

15.
Amino acid homeostasis was investigated in frost-resistant barley seedlings under either cold- or freezing-stress conditions. Total free amino acid content varied only slightly, but a substantial conversion of glutamate to gamma-aminobutyric acid (GABA) was found that was proportional to the severity of the stress. Cold acclimation caused a significant increase in amino acid pools, and induced the expression of the GABA-shunt genes. As a consequence, GABA accumulated to a higher extent during the subsequent exposure to lower temperature. A different picture was obtained with a frost-sensitive genotype, in which glutamate decarboxylation occurred during the stress as well, but the activation of the GABA shunt seemed not to take place, and free glutamate was almost depleted. Analogous results were found in frost-resistant and frost-sensitive wheat cultivars. Feeding non-hardened plants with exogenous glutamate resulted in increased GABA accumulation under low temperature. The possibility that glutamate decarboxylation and GABA metabolism would play a role in frost tolerance is discussed.  相似文献   

16.
Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion. The levels and isotope labeling of alanine, aspartate, glutamate, glutamine, and gamma-aminobutyric acid (GABA) served as indicators of intermediary metabolism. We found that the GABA shunt of SUR1(-/-) islets is blocked by about 75% and showed that this defect is due to decreased glutamate decarboxylase synthesis, probably caused by elevated free intracellular calcium. Glutaminolysis stimulated by the leucine analogue d,l-beta-2-amino-2-norbornane-carboxylic acid was, however, enhanced in SUR1(-/-) and glyburide-treated SUR1(+/+) islets. Glucose oxidation and pyruvate cycling was increased in SUR1(-/-) islets at low glucose but was the same as in controls at high glucose. Malic enzyme isoforms 1, 2, and 3, involved in pyruvate cycling, were all expressed in islets. High glucose lowered aspartate and stimulated glutamine synthesis similarly in controls and SUR1(-/-) islets. The data suggest that the interruption of the GABA shunt and the lack of glucose regulation of pyruvate cycling may cause the glucose insensitivity of the SUR1(-/-) islets but that enhanced basal pyruvate cycling, lowered GABA shunt flux, and enhanced glutaminolytic capacity may sensitize the beta cells to amino acid stimulation.  相似文献   

17.
Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress   总被引:1,自引:0,他引:1  
4-aminobutyrate (GABA) is a non-protein amino acid that is widely distributed throughout the biological world. In animals, GABA functions as the predominant inhibitory neurotransmitter in the central nervous system by acting through the GABA receptors. The neuromuscular system enables animals to escape from environmental stresses. Being nonmotile, plants have evolved chemical responses to mitigate stress. Mechanisms by which GABA may facilitate these responses are discussed in this review. Environmental stresses increase GABA accumulation through two different mechanisms. Stresses causing metabolic and/or mechanical disruptions, resulting in cytosolic acidification, induce an acidic pH-dependent activation of glutamate decarboxylase and GABA synthesis. Extremely marked declines in cytosolic pH occur under oxygen deprivation, which is the primary stress factor in flooded soils, and this stress induces the greatest accumulation of GABA. Other stresses, including cold, heat, salt, and mild or transient environmental factors, such as touch, wind, rain, etc. rapidly increase cellular levels of Ca2+. Increased cytosolic Ca2+ stimulates calmodulin-dependent glutamate decarboxylase activity and GABA synthesis. A review of the kinetics of GABA accumulation in plants reveals a stress-specific pattern of accumulation that is consistent with a physiological role for GABA in stress mitigation. Recent physiological and genetic evidence indicates that plants may possess GAB A-like receptors that have features in common with the animal receptors. The mechanism of action of animal GABA receptors suggests a model for rapid amplification of ion-mediated signals and GABA accumulation in response to stress. Metabolic pathways that link GABA to stress-related metabolism and plant hormones are identified. The survival value of stress-related metabolism is dependent on metabolic changes occurring before stress causes irreversible damage to plant tissue. Rapid accumulation of GABA in stressed tissue may provide a critical link in the chain of events leading from perception of environmental stresses to timely physiological responses.  相似文献   

18.
19.
In the present study, the distribution of succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) in the hippocampus of the Mongolian gerbil and its association with various sequelae of spontaneous seizure were investigated in order to identify the roles of GABA shunt in the epileptogenesis and the recovery mechanisms in these animals. Both SSADH and SSAR immunoreactivities in the GABAergic neurons were significantly higher in the pre-seizure groups of seizure sensitive (SS) gerbil as compared to those seen in the seizure resistant (SR) gerbils. The distributions of both SSADH and SSAR immunoreactivities in the hippocampus showed significant differences after the on-set of seizure. At 3 h postictal, when compared to the pre-seizure group of SS gerbils, a decline in the immunoreactivities in the perikarya was observed. At 12 h after seizure on-set, the densities of both SSADH and SSAR immunoreactivities were begun to recover to the pre-seizure level of SS gerbils. These results suggest that the GABAergic neurons in the hippocampal complex of the SS gerbil may be highly activated. In addition, the imbalance of GABA shunt expressions in the GABAergic neurons may imply a malfunction of the metabolism of GABAergic neurons in the SS gerbils, and this defect may trigger seizure on-set. Therefore, the initiation of seizure, at least in gerbils, may be the result of a malfunction in GABA shunt in the GABAergic neurons.  相似文献   

20.
Production of cyanide through biological and environmental processes requires the detoxification of this metabolic poison. In the 1960s, discovery of the β ‐cyanoalanine synthase ( β ‐CAS) pathway in cyanogenic plants provided the first insight on cyanide detoxification in nature. Fifty years of investigations firmly established the protective role of the β ‐CAS pathway in cyanogenic plants and its role in the removal of cyanide produced from ethylene synthesis in plants, but also revealed the importance of this pathway for plant growth and development and the integration of nitrogen and sulfur metabolism. This review describes the β ‐CAS pathway, its distribution across and within higher plants, and the diverse biological functions of the pathway in cyanide assimilation, plant growth and development, stress tolerance, regulation of cyanide and sulfide signalling, and nitrogen and sulfur metabolism. The collective roles of the β ‐CAS pathway highlight its potential evolutionary and ecological importance in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号