首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Yeast replication factor C (RF-C) is a multipolypeptide complex required for chromosomal DNA replication. Previously this complex was known to consist of at least four subunits. We here report the identification of a fifth RF-C subunit from Saccharomyces cerevisiae, encoded by the RFC5 (YBR0810) gene. This subunit exhibits highest homology to the 38 kDa subunit (38%) of human RF-C (activator 1). Like the other four RFC genes, the RFC5 gene is essential for yeast viability, indicating an essential function for each subunit. RFC5 mRNA is expressed at steady-state levels throughout the mitotic cell cycle. Upon overexpression in Escherichia coli Rfc5p has an apparent molecular mass of 41 kDa. Overproduction of RF-C activity in yeast is dependent on overexpression of the RFC5 gene together with overexpression of the RFC1-4 genes, indicating that the RFC5 gene product forms an integral subunit of this replication factor.  相似文献   

4.
Replication factor C (RFC) is a five-subunit DNA polymerase accessory protein that functions as a structure-specific, DNA-dependent ATPase. The ATPase function of RFC is activated by proliferating cell nuclear antigen. RFC was originally purified from human cells on the basis of its requirement for simian virus 40 DNA replication in vitro. A functionally homologous protein complex from Saccharomyces cerevisiae, called ScRFC, has been identified. Here we report the cloning, by either peptide sequencing or by sequence similarity to the human cDNAs, of the S. cerevisiae genes RFC1, RFC2, RFC3, RFC4, and RFC5. The amino acid sequences are highly similar to the sequences of the homologous human RFC 140-, 37-, 36-, 40-, and 38-kDa subunits, respectively, and also show amino acid sequence similarity to functionally homologous proteins from Escherichia coli and the phage T4 replication apparatus. All five subunits show conserved regions characteristic of ATP/GTP-binding proteins and also have a significant degree of similarity among each other. We have identified eight segments of conserved amino acid sequences that define a family of related proteins. Despite their high degree of sequence similarity, all five RFC genes are essential for cell proliferation in S. cerevisiae. RFC1 is identical to CDC44, a gene identified as a cell division cycle gene encoding a protein involved in DNA metabolism. CDC44/RFC1 is known to interact genetically with the gene encoding proliferating cell nuclear antigen, confirming previous biochemical evidence of their functional interaction in DNA replication.  相似文献   

5.
6.
Rad24 functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. Here, analysis of Rad24 in whole cell extracts demonstrated that its mass was considerably greater than its predicted molecular weight, suggesting that Rad24 is a component of a protein complex. The Rad24 complex was purified to homogeneity. In addition to Rad24, the complex included polypeptides of 40 kDa and 35 kDa. The 40 kDa species was found by mass spectrometry to contain Rfc2 and Rfc3, subunits of replication factor C (RFC), a five subunit protein that is required for the loading of polymerases onto DNA during replication and repair [3]. We hypothesised that other RFC subunits, all of which share sequence homologles with Rad24, might also be components of the Rad24 complex. Reciprocal co-immunoprecipitation studies were performed using extracts prepared from strains containing epitope-tagged RFC proteins. These experiments showed that the small RFC proteins, Rfc2, Rfc3, Rfc4 and Rfc5, interacted with Rad24, whereas the Rfc1 subunit did not. We suggest that this RFC-like Rad24 complex may function as a structure-specific sensor in the DNA damage checkpoint pathway.  相似文献   

7.
In the present study, we identified and characterized two cDNAs, named TaGA1 and TaGA2, encoding alpha subunits of heterotrimeric G proteins synthesized from one-week-old seedling mRNAs of common wheat cv. S615 using RACE PCR and RT-PCR methods. The clone TaGA1 contained an open reading frame that encoded a protein consisting of 383 amino acid residues with a molecular mass of 51.3 kDa, whereas the clone TaGA2 contained an open reading frame encoding 390 amino acids with a molecular mass of 52.5 kDa. At the amino acid level, both cDNAs (TaGA1 and TaGA2) showed 70-96% and 30-40% homologies to plant and animal G-protein alpha (G alpha) subunits, respectively, and 97.7% homology to each other. The regions essential for binding to GTP were conserved among all G alpha subunits in higher plants and mammals examined. However, the C-terminal amino acid sequences of TaGA1 and TaGA2 were similar to those of cereal G alpha subunits (rice and barley) but were different from the analogous sequences of mammalian G alpha subunits as well as from those of the leguminous and Solanaeceous G alpha subunits. Southern analysis revealed that the hexaploid wheat genome contained three major copies of G alpha subunit gene with a few less homologous copies. The analysis of the expression for G alpha subunit genes in wheat showed that both TaGA1 and TaGA2 mRNAs were abundant in one-week-old seedlings, immature seeds harvested one-week after anthesis, young spikes and internodes, indicating constitutive expression patterns in all of the organs tested. Especially, young spikes and internodes exhibited increased levels of mRNA accumulation, suggesting that G alpha subunit gene is highly expressed in actively elongating and fast growing tissues. Moreover, both TaGA1 and TaGA2 showed genome-specific expressions in wheat and may participate in the light-regulated growth and development of the seedlings.  相似文献   

8.
Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis. The function of RFC is to load PCNA, a processivity factor of replicative DNA polymerases, onto primed DNA templates. The central hole of the PCNA homo-trimeric ring encircles doublestranded DNA, so that DNA polymerases can operate for DNA synthesis with PCNA along a DNA template. The Pyrococcus furiosus RFC (PfuRFC) consists of a small subunit (RFCS, 37kDa) and a large subunit (RFCL, 55kDa), which show significant sequence identity to the eukaryotic homologs. The C-terminal region of RFCL has an acidic cluster of about 30 amino acids, which consists mainly of glutamic acid residues, and a following basic cluster of 10 amino acids, which consists mainly of lysine residues. These clusters of charged amino acids, which precede the C-terminal consensus sequence, PIP (PCNA interacting protein)-box, are conserved in several archaeal RFCLs. The series of mutant PfuRFC containing the C-terminal deletions in RFCL were constructed. The mutational analyses showed that the charged cluster is not essential for loading of PCNA onto DNA. However, the region containing the basic cluster is important for the stable ternary (RFC-PCNA-DNA) complex formation.  相似文献   

9.
Replication factor C (RFC, also called activator 1), in conjunction with proliferating cell nuclear antigen (PCNA), is responsible for processive DNA synthesis catalyzed by the eukaryotic replicative DNA polymerases delta and epsilon. Here we report the isolation and characterization of homologues of RFC and PCNA from the archaeon, Methanobacterium thermoautotrophicum DeltaH. In contrast to the five subunit RFC complex isolated from eukaryotic cells, the mthRFC contains only two subunits. The two genes encoding the RFC subunits called, mthRFC1 and mthRFC3, were cloned, and the proteins (54.4 and 36.8 kDa, respectively) were overexpressed in Escherichia coli and purified individually and as a complex. The gene encoding PCNA was also cloned, and the protein was purified after overexpression in E. coli. Based on sizing column elution and subunit composition, the mthRFC complex appears to be a hexamer consisting of two mthRFC1 protomers and four mthRFC3 protomers. Although mthRFC differs in organization from its eukaryotic counterpart, it was shown to be functionally similar to eukaryotic RFC in: (i) catalyzing DNA-dependent ATP hydrolysis; (ii) binding preferentially to DNA primer ends; (iii) loading mthPCNA onto singly nicked circular DNA; and (iv) supporting mthPolB-catalyzed PCNA-dependent DNA chain elongation. The importance and roles of RFC and PCNA in M. thermoautotrophicum DeltaH replication are discussed.  相似文献   

10.
cDNA clones for two subunits (designated subunits K and L) of rat liver multicatalytic proteinase (MCP) were isolated using oligonucleotide probes synthesized according to their partial amino acid sequences. The encoded polypeptides of subunits K and L consisted of 255 and 261 amino acid residues with calculated molecular mass of 28.3 kDa and 29.5 kDa, respectively. Northern blot analysis revealed that subunits K and L were expressed in all tissues examined and their expression patterns were almost identical. The deduced amino acid sequences showed no similarities to known protein sequences other than the recently reported sequences of rat and Drosophila MCP subunits. Sequence comparison of MCP subunits of rat and Drosophila revealed that the N-terminal two-thirds of the sequence (especially the N-terminal approximately 20 residues) is conserved, but the C-terminal third of the sequence shows no similarity, suggesting functional and structural roles for both regions. Implications for the structural and functional aspects of MCP subunits are discussed based on the sequence similarity.  相似文献   

11.
DNA polymerases A and B purified from wheat (Triticum monococcum) embryos were previously shown to be respectively the plant counterparts of mammalian DNA polymerases α and δ. From wheat cultured cells, we isolated a protein fraction able to replicate a DNA template/primer in a cell-free DNA replication assay. This fraction contains the DNA polymerases pol A and pol B, exhibiting the same biochemical properties as those found in wheat embryo. The catalytic subunits of DNA polymerases pol A and B purified from this fraction were analysed by a DNA polymerase trap assay and their molecular mass were respectively determined as 90 and 125 kDa. This shows that pol A catalytic subunit is shorter than those of yeast or mammal DNA polymerases α (respectively 180 and 165 kDa), whereas pol B catalytic subunit exhibits the same molecular mass as yeast and mammal DNA polymerases δ (125 kDa). Catalytic subunit identification using DNA polymerase trap assay could be a good alternative to isolate and sequence active polypeptides from low purified enzymes. These results contribute to the molecular characterization of DNA replication enzymes in plants and will permit to establish a plant DNA replication model.  相似文献   

12.
The 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DBPD) of Pseudomonas putida OU83 was constitutively expressed and purified to apparent homogeneity. The apparent molecular mass of the native enzyme was 256 kDa, and the subunit molecular mass was 32 kDa. The data suggested that 2,3-DBPD was an octamer of identical subunits. The nucleotide sequence of a DNA fragment containing the bphC region was determined. The deduced protein sequence for 2,3-DBPD consisted of 292 amino acid residues, with a calculated molecular mass of 31.9 kDa, which was in agreement with data for the purified 2,3-DBPD. Nucleotide and amino acid sequence analyses of the bphC gene and its product, respectively, revealed that there was a high degree of homology between the OU83 bphC gene and the bphC genes of Pseudomonas cepacia LB400 and Pseudomonas pseudoalcaligenes KF707.  相似文献   

13.
Caspase-3 is an ICE-like protease activated during apoptosis induced by different stimuli. Poly(ADP-ribose) polymerase (PARP), the first characterized substrate of caspase-3, shares a region of homology with the large subunit of Replication Factor C (RF-C), a five-subunit complex that is part of the processive eukaryotic DNA polymerase holoenzymes. Caspase-3 cleaves PARP at a DEVD-G motif present in the 140 kDa subunit of RF-C (RFC140) and evolutionarily conserved. We show that cleavage of RFC140 during Fas-mediated apoptosis in Jurkat cells and lymphocytes results in generation of multiple fragments. Cleavage is inhibited by the caspase-3-like protease inhibitor Ac-DEVD-CHO but not the caspase-1/ICE-type protease inhibitor Ac-YVAD-CHO. In addition, recombinant caspase-3 cleaves RFC140 in vitro at least at three different sites in the C-terminal half of the protein. Using amino-terminal microsequencing of radioactive fragments, we identified three sites: DEVD723G, DLVD922S and IETD1117A. We did not detect cleavage of small subunits of RF-C of 36, 37, 38 and 40 kDa by recombinant caspase-3 or by apoptotic Jurkat cell lysates. Cleavage of RFC140 during apoptosis inactivates its function in DNA replication and generates truncated forms that further inhibit DNA replication. These results identify RFC140 as a critical target for caspase-3-like proteases and suggest that caspases could mediate cell cycle arrest.  相似文献   

14.
The identity of DNA replication proteins and cell cycle regulatory proteins which can be found in complexes involving PCNA were investigated by the use of PCNA immobilized on Sepharose 4B. A column containing bovine serum albumin (BSA) bound to Sepharose was used as a control. Fetal calf thymus extracts were chromatographed on PCNA-Sepharose and BSA-Sepharose. The columns were washed and then eluted with 0.5 M KCl. The salt eluates were examined for the presence of both DNA replication proteins (Pol alpha, delta, straightepsilon, PCNA, RFC, RFA, DNA ligase I, NDH II, Topo I and Topo II) and cell cycle proteins (Cyclins A, B1, D1, D2, D3, E, CDK2, CDK4, CDK5 and p21) by western blotting with specific antibodies. The DNA replication proteins which bound to PCNA-Sepharose included DNA polymerase delta and straightepsilon, PCNA, the 37 and 40 kDa subunits of RFC, the 70 kDa subunit of RPA, NDH II and topoisomerase I. No evidence for the binding of DNA polymerase alpha, DNA ligase I or topoisomerase II was obtained. Of the cell cycle proteins investigated, CDK2, CDK4 and CDK5 were bound. This study presents strong evidence that PCNA is a component of protein complexes containing DNA replication, repair and cell cycle regulatory proteins.  相似文献   

15.
Photosystem I reaction center of the cyanobacterium Synechocystis sp. PCC 6803 contains seven different polypeptide subunits. The subunit with a molecular mass of about 8 kDa was isolated, and the sequence of its amino-terminal residues was determined. Oligonucleotide probes corresponding to this sequence were used to isolate the gene encoding this subunit. The gene, termed as psaE, codes for a polypeptide with a mass of 8075 Da. It is present as a single copy in the genome and is transcribed as a monocistronic messenger. The amino acid sequence of the 8-kDa subunit deduced from the gene sequence shows high homology with the deduced amino acid sequence of subunit IV of photosystem I from spinach. The DNA fragment sequenced in these studies also contains two other unidentified major open reading frames. A stable deletion mutation for the psaE gene was generated by transforming Synechocystis sp. PCC 6803 with a cloned DNA in which the psaE gene for 8-kDa subunit was replaced by a gene conferring resistance to kanamycin. The mutant strain shows minor differences in growth under photoautotrophic conditions and in the photosystem I activity in comparison to the wild type.  相似文献   

16.
A growing body of evidence suggests that establishment of sister chromatid cohesion is dependent on replication fork passage over a precohesion area. In Saccharomyces cerevisiae, this process involves an alternative replication factor C (RFC) complex that contains the four small RFC subunits as well as CTF18, CTF8, and DCC1. Here, we show that an evolutionarily conserved homologous complex exists in the nucleus of human cells. We demonstrate that hCTF18, hCTF8, and hDCC1 interact with each other as well as with the p38 subunit of RFC. This alternative RFC-containing complex interacts with proliferating cell nuclear antigen but not with the Rad9/Rad1/Hus1 complex, a proliferating cell nuclear antigen-like clamp involved in the DNA damage response. hCTF18 preferentially binds chromatin during S phase, suggesting a role during replication. Our data provide evidence for the existence of an alternative RFC complex with a probable role in mammalian sister chromatid cohesion establishment.  相似文献   

17.
Replication Factor C (RF-C) of Saccharomyces cerevisiae is a complex that consists of several different polypeptides ranging from 120- to 37 kDa (Yoder and Burgers, 1991; Fien and Stillman, 1992), similar to human RF-C. We have isolated a gene, RFC2, that appears to be a component of the yeast RF-C. The RFC2 gene is located on chromosome X of S. cerevisiae and is essential for cell growth. Disruption of the RFC2 gene led to a dumbbell-shaped terminal morphology, common to mutants having a defect in chromosomal DNA replication. The steady-state levels of RFC2 mRNA fluctuated less during the cell cycle than other genes involved in DNA replication. Nucleotide sequence of the gene revealed an open reading frame corresponding to a polypeptide with a calculated Mr of 39,716 and a high degree of amino acid sequence homology to the 37-kDa subunit of human RF-C. Polyclonal antibodies against bacterially expressed Rfc2 protein specifically reduced RF-C activity in the RF-C-dependent reaction catalyzed by yeast DNA polymerase III. Furthermore, the Rfc2 protein was copurified with RF-C activity throughout RF-C purification. These results strongly suggest that the RFC2 gene product is a component of yeast RF-C. The bacterially expressed Rfc2 protein preferentially bound to primed single-strand DNA and weakly to ATP.  相似文献   

18.
The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Okazaki fragments. In this study, we describe an association between replication factor C (RFC), the clamp loader, and DNA ligase I in human cell extracts. Subsequently, we demonstrate that there is a direct physical interaction between these proteins that involves both the N- and C-terminal domains of DNA ligase I, the N terminus of the large RFC subunit p140, and the p36 and p38 subunits of RFC. Although RFC inhibited DNA joining by DNA ligase I, the addition of PCNA alleviated inhibition by RFC. Notably, the effect of PCNA on ligation was dependent on the PCNA-binding site of DNA ligase I. Together, these results provide a molecular explanation for the key in vivo role of the DNA ligase I/PCNA interaction and suggest that the joining of Okazaki fragments is coordinated by pairwise interactions among RFC, PCNA, and DNA ligase I.  相似文献   

19.
We have previously shown that the regulatory subunit of PKA, RIalpha, functions as a nuclear transport protein for the second subunit of the replication factor C complex, RFC40, and that this transport appears to be crucial for cell cycle progression from G1 to S phase. In this study, we found that N(6)-monobutyryl cAMP significantly up-regulates the expression of RFC40 mRNA by 1.8-fold and its endogenous protein by 2.3-fold with a subsequent increase in the RIalpha-RFC40 complex formation by 3.2-fold. Additionally, the nuclear to cytoplasmic ratio of RFC40 increased by 26% followed by a parallel increase in the percentage of S phase cells by 33%. However, there was reduction in the percentage of G1 cells by 16% and G2/M cells by 43% with a concurrent accumulation of cells in S phase. Interestingly, the higher percentage of S phase cells did not correlate with a parallel increase in DNA replication. Moreover, although cAMP did not affect the expression of the other RFC subunits, there was a significant decrease in the RFC40-37 complex formation by 81.3%, substantiating the decrease in DNA replication rate. Taken together, these findings suggest that cAMP functions as an upstream modulator that regulates the expression and nuclear translocation of RFC40.  相似文献   

20.
The yeast ATP synthase subunit 4: structure and function   总被引:1,自引:0,他引:1  
The structure of ATP synthase subunit 4 was determined by using the oligonucleotide probe procedure. This subunit is the fourth polypeptide of the complex when classifying subunits in order of decreasing molecular mass. Its relative molecular mass is 25 kDa. The ATP4 gene was isolated and sequenced. The nucleotide sequence predicts that subunit 4 is probably derived from a precursor protein 244 amino acids long. Mature subunit 4 contains 209 amino acid residues and the predicted molecular mass is 23250 kDa. Subunit 4 shows homology with the b-subunit of Escherichia coli ATP synthase and the b-subunit of beef heart mitochondrial ATP synthase. By using homologous transformation, a mutant lacking wild subunit 4 was constructed. This mutant is devoid of oxidative phosphorylation and F1 is loosely bound to the membrane. Our data are in favor of a structural relationship between subunit 4 and the mitochondrially-translated subunit 6 during biogenesis of F0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号