首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the recruitment of fibroblasts to areas of injury is critical for wound healing, their subsequent apoptosis is necessary in order to prevent excessive scarring. Fibroproliferative diseases, such as pulmonary fibrosis, are often characterized by fibroblast resistance to apoptosis, but the mechanism(s) for this resistance remains elusive. Here, we employed a murine model of pulmonary fibrosis and cells from patients with idiopathic pulmonary fibrosis (IPF) to explore epigenetic mechanisms that may be responsible for the decreased expression of Fas, a cell surface death receptor whose expression has been observed to be decreased in pulmonary fibrosis. Murine pulmonary fibrosis was elicited by intratracheal injection of bleomycin. Fibroblasts cultured from bleomycin-treated mice exhibited decreased Fas expression and resistance to Fas-mediated apoptosis compared with cells from saline-treated control mice. Although there were no differences in DNA methylation, the Fas promoter in fibroblasts from bleomycin-treated mice exhibited decreased histone acetylation and increased histone 3 lysine 9 trimethylation (H3K9Me3). This was associated with increased histone deacetylase (HDAC)-2 and HDAC4 expression. Treatment with HDAC inhibitors increased Fas expression and restored susceptibility to Fas-mediated apoptosis. Fibroblasts from patients with IPF likewise exhibited decreased histone acetylation and increased H3K9Me3 at the Fas promoter and increased their expression of Fas in the presence of an HDAC inhibitor. These findings demonstrate the critical role of histone modifications in the development of fibroblast resistance to apoptosis in both a murine model and in patients with pulmonary fibrosis and suggest novel approaches to therapy for progressive fibroproliferative disorders.  相似文献   

2.
Berdasco M  Esteller M 《Aging cell》2012,11(2):181-186
Aging is a complex process that results in compromised biological functions of the organism and increased susceptibility to disease and death. Although the molecular basis of aging is currently being investigated in many experimental contexts, there is no consensus theory to fully explain the aging process. Epigenetic factors, including DNA methylation, histone modifications, and microRNA expression, may play central roles in controlling changes in gene expression and genomic instability during aging. In this Hot Topic review, we first examine the mechanisms by which these epigenetic factors contribute to aging in diverse eukaryotic species including experimental models of yeasts, worms, and mammals. In a second section, we will emphasize in the mammalian epigenetic alterations and how they may affect human longevity by altering stem cell function and/or somatic cell decline. The field of aging epigenetics is ripe with potential, but is still in its infancy, as new layers of complexity are emerging in the epigenetic network. As an example, we are only beginning to understand the relevance of non-coding genome to organism aging or the existence of an epigenetic memory with transgenerational inheritance. Addressing these topics will be fundamental for exploiting epigenetics phenomena as markers of aging-related diseases or as therapeutic targets.  相似文献   

3.
开花是指植物从营养生长转变到生殖生长的生理过程,是植物个体发育和后代繁衍的中心环节,既受遗传基础决定,同时又受到温度和光周期等多种环境因素的调控。在拟南芥中,已经分离了大量的与开花相关的基因,从遗传学上已初步形成了一个开花调控的网络。组蛋白甲基化是植物发育过程的重要调节方式,近年来关于其参与开花调控的研究有了重要进展。本文综述了具有代表性的组蛋白H3赖氨酸甲基化修饰参与调控植物开花发育的机制,提出该研究领域的发展方向和前景。  相似文献   

4.
组蛋白甲基化是一种重要的表观遗传修饰方式,2004年组蛋白去甲基化酶的发现使人们认识到组蛋白的甲基化也是一个可逆的修饰过程,并由此掀起了人们对组蛋白去甲基化研究的热潮。该文主要从近年来研究人员在组蛋白去甲基化酶的鉴定、组蛋白去甲基化酶的功能研究等方面取得的进展进行阐述,并就该方面的研究进行展望。  相似文献   

5.
6.
    
Histone methylation is believed to play important roles in epigenetic memory in various biological processes. However, questions like whether the methylation marks themselves are faithfully transmitted into daughter cells and through what mechanisms are currently under active investigation. Previously, methylation was considered to be irreversible, but the recent discovery of histone lysine demethylases revealed a dynamic nature of histone methylation regulation on four of the main sites of methylation on histone H3 and H4 tails (H3K4, H3K9, H3K27 and H3K36). Even so, it is still unclear whether demethylases specific for the remaining two sites, H3K79 and H4K20, exist. Furthermore, besides histone proteins, the lysine methylation and demethylation also occur on non-histone proteins, which are probably subjected to similar regulation as histones. This review discusses recent progresses in protein lysine methylation regulation focusing on the above topics, while referring readers to a number of recent reviews for the biochemistry and biology of these enzymes  相似文献   

7.
We investigated the effects of agents that induce reelin mRNA expression in vitro on the methylation status of the human reelin promoter in neural progenitor cells (NT2). NT2 cells were treated with the histone deacetylase inhibitors, trichostatin A (TSA) and valproic acid (VPA), and the methylation inhibitor aza-2'-deoxycytidine (AZA) for various times. All three drugs reduced the methylation profile of the reelin promoter relative to untreated cells. The acetylation status of histones H3 and H4 increased following treatment with VPA and TSA at times as short as 15 min following treatment; a result consistent with the reported mode of action of these drugs. Chromatin immunoprecipitation experiments showed that these changes were accompanied by changes occurring at the level of the reelin promoter as well. Interestingly, AZA decreased reelin promoter methylation without concomittantly increasing histone acetylation. In fact, after prolonged treatments with AZA, the acetylation status of histones H3 and H4 decreased relative to untreated cells. We also observed a trend towards reduced methylated H3 after 18 h treatment with TSA and VPA. Our data indicate that while TSA and VPA act to increase histone acetylation and reduce promoter methylation, AZA acts only to decrease the amount of reelin promoter methylation.  相似文献   

8.
表遗传学与肿瘤   总被引:1,自引:0,他引:1  
表遗传学通过对核小体上D NA和组蛋白的结构修饰以及其后导致的染色质结构改变而对局部或整体的基因表达产生重要的调控作用.肿瘤分子生物学研究表明,表遗传学的紊乱与基因的变异一起参与了包括肿瘤细胞生长和分化、细胞周期的调控、D N A修复与重新表达、原癌基因的激活、肿瘤细胞的转移及肿瘤细胞逃避宿主免疫监视等肿瘤发生发展的整个过程.相对于基因变异而言,可逆的表遗传学调控为肿瘤的治疗提供一个全新的方向,而对其分子机制的研究为抗肿瘤药物的设计也提供了一个全新的靶点,从而对肿瘤的临床治疗具有重要的意义.  相似文献   

9.
植物同源结构域(plant homeodomain,PHD结构域),是真核生物中一种进化保守的锌指结构域.多种调控基因转录、细胞周期、凋亡的蛋白质含有PHD结构域.研究表明,PHD结构域涉及多种功能,包括蛋白质相互作用,特别是同核小体组蛋白的作用.目前认为,各种组蛋白修饰(包括甲基化、乙酰化、磷酸化、泛素化等)的模式和组合,调节染色质状态和基因转录活性,并提出了组蛋白密码理论.PHD指结构域能特异性识别组蛋白的甲基化(修饰)密码,可能是组蛋白密码的一种重要解读器.  相似文献   

10.
组蛋白密码学说提出后,大大丰富了人们对遗传信息的认识,使得组蛋白修饰的研究备受瞩目.近年来包括组蛋白乙酰化、甲基化、磷酸化、泛素化等在内的多种共价化学修饰在植物生长发育过程中参与基因表达调控的作用机制逐渐被阐明,组蛋白各种修饰之间的相互关系也有了进一步的认识.随着研究的深入,将加快组蛋白密码的破译,帮助我们认清植物基因表达调控的本质.  相似文献   

11.
In eukaryotes, epigenetic information can be encoded in parental cells through modification of histones and subsequently passed on to daughter cells in a process known as transgenerational epigenetic regulation. Simian Virus 40 (SV40) is a well-characterized virus whose small circular DNA genome is organized into chromatin and, as a consequence, undergoes many of the same biological processes observed in cellular chromatin. In order to determine whether SV40 is capable of transgenerational epigenetic regulation, we have analyzed SV40 chromatin from minichromosomes and virions for the presence of modified histones using various ChIP techniques and correlated these modifications with specific biological effects on the SV40 life cycle. Our results demonstrate that, like its cellular counterpart, SV40 chromatin is capable of passing biologically relevant transgenerational epigenetic information between infections.  相似文献   

12.
PR domain-containing protein 7 (PRDM7) is a primate-specific histone methyltransferase that is the result of a recent gene duplication of PRDM9. The two proteins are highly homologous, especially in the catalytic PR/SET domain, where they differ by only three amino acid residues. Here we report that PRDM7 is an efficient methyltransferase that selectively catalyzes the trimethylation of H3 lysine 4 (H3K4) both in vitro and in cells. Through selective mutagenesis we have dissected the functional roles of each of the three divergent residues between the PR domains of PRDM7 and PRDM9. These studies indicate that after a single serine to tyrosine mutation at residue 357 (S357Y), PRDM7 regains the substrate specificities and catalytic activities similar to its evolutionary predecessor, including the ability to efficiently methylate H3K36.  相似文献   

13.
《Epigenetics》2013,8(6):528-534
In eukaryotes, epigenetic information can be encoded in parental cells through modification of histones and subsequently passed on to daughter cells in a process known as transgenerational epigenetic regulation. Simian Virus 40 (SV40) is a well-characterized virus whose small circular DNA genome is organized into chromatin and, as a consequence, undergoes many of the same biological processes observed in cellular chromatin. In order to determine whether SV40 is capable of transgenerational epigenetic regulation, we have analyzed SV40 chromatin from minichromosomes and virions for the presence of modified histones using various ChIP techniques and correlated these modifications with specific biological effects on the SV40 life cycle. Our results demonstrate that, like its cellular counterpart, SV40 chromatin is capable of passing biologically relevant transgenerational epigenetic information between infections.  相似文献   

14.
15.
16.
《Epigenetics》2013,8(11):1133-1140
Psychotropic agents are notorious for their ability to increase fat mass in psychiatric patients. The two determinants of fat mass are the production of newly differentiated adipocytes (adipogenesis), and the volume of lipid accumulation. Epigenetic programs have a prominent role in cell fate commitments and differentiation required for adipogenesis. In parallel, epigenetic effects on energy metabolism are well supported by several genetic models. Consequently, a variety of psychotropics, often prescribed in combinations and for long periods, may utilize a common epigenetic effector path causing an increase in adipogenesis or reduction in energy metabolism. In particular, the recent discovery that G protein coupled signaling cascades can directly modify epigenetic regulatory enzymes implicates surface receptor activity by psychotropic medications. The potential therapeutic implications are also suggested by the effects of the clinically approved antidepressant tranylcypromine, also a histone demethylase inhibitor, which has impressive therapeutic effects on metabolism in the obese phenotype.  相似文献   

17.
    
Histone lysine methyltransferases (HKMTs) deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression. The structures and functions of HKMTs have been extensively investigated in recent decades, significantly advancing our understanding of the dynamic regulation of histone methylation. Here, we review the recent progress in structural studies of representative HKMTs in complex with nucleosomes (H3K4, H3K27, H3K36, H3K79, and H4K20 methyltransferases), with emphasis on the molecular mechanisms of nucleosome recognition and trans-histone crosstalk by these HKMTs. These structural studies inform HKMTs’ roles in tumorigenesis and provide the foundations for developing new therapeutic approaches targeting HKMTs in cancers.  相似文献   

18.
The underlying mechanism for the establishment and maintenance of differential DNA methylation in imprinted genes is largely unknown. Previous studies using Dnmt1 knock-out embryonic stem (ES) cells demonstrated that, although re-expression of DNMT1 restored DNA methylation in the non-imprinted regions, the methylation patterns of imprinted genes could be restored only through germ line passage. Knock-out of Uhrf1, an accessory factor essential for DNMT1-mediated DNA methylation, in mouse ES cells also led to impaired global DNA methylation and loss of genomic imprinting. Here, we demonstrate that, although re-expression of UHRF1 in Uhrf1−/− ES cells restored DNA methylation for the bulk genome but not for most of the imprinted genes, it did rescue DNA methylation for the imprinted H19, Nnat, and Dlk1 genes. Analysis of histone modifications at the differential methylated regions of the imprinted genes by ChIP assays revealed that for the imprinted genes whose DNA methylation could be restored upon re-expression of UHRF1, the active histone markers (especially H3K4me3) were maintained at considerably low levels, and low levels were maintained even in Uhrf1−/− ES cells. In contrast, for the imprinted genes whose DNA methylation could not be restored upon UHRF1 re-expression, the active histone markers (especially H3K4me3) were relatively high and became even higher in Uhrf1−/− ES cells. Our study thus supports a role for histone modifications in determining the establishment of imprinting-related DNA methylation and demonstrates that mouse ES cells can be a valuable model for mechanistic study of the establishment and maintenance of differential DNA methylation in imprinted genes.  相似文献   

19.
The study of mammalian corticogenesis has revealed a critical role for Polycomb group (PcG) factors in timing the execution of developmental choices. Meanwhile, the study of post-translational modifications of PcG factors marks a symmetrical point, namely that the activity of PcG proteins is itself timed in a manner that links progression through the cell cycle to targeting of downstream genes. Finally, in a third symmetrical twist, the studies that dissect the timing of neural fate by Polycomb are also uncovering the importance of timing in the experimental mutation, since ablation of the same PcG member at different developmental stages yields dramatically different results. Here, I weave together these three lines of evidence and develop a unifying model that clarifies the dynamics of Polycomb function in neural development and defines the salient challenges ahead.  相似文献   

20.
    
Drugs of addiction lead to a wide range of epigenetic changes at the promoter regions of genes directly implicated in learning and memory processes. We have previously shown that the histone deactylase inhibitor, sodium butyrate (NaB), accelerates the extinction of nicotine‐seeking and provides resistance to relapse. Here, we explore the potential molecular mechanisms underlying this effect. Rats received intravenous nicotine or saline self‐administration, followed by 6 days of extinction training, with each extinction session followed immediately by treatment with NaB or vehicle. On the last day of extinction, rats were killed and the medial ventral prefrontal cortex retained for chromatin immunoprecipitation and quantitative polymerase chain reaction (qPCR). A history of nicotine exposure significantly decreased H3K14 acetylation at the brain‐derived neurotrophic factor (BDNF) exon IV promoter, and this effect was abolished with NaB treatment. In contrast, nicotine self‐administration alone, resulted in a significant decrease in histone methylation at the H3K27me3 and H3K9me2 marks in the promoter regions of BDNF exon IV and cyclin‐dependent kinase 5 (Cdk‐5). Quantitative PCR‐identified changes in several genes associated with NaB treatment that were independent of nicotine exposure; however, an interaction of nicotine history and NaB treatment was detected only in the expression of BDNF IV and BDNF IX. Together these results suggest that nicotine self‐administration leads to a number of epigenetic changes at both the BDNF and Cdk‐5 promoters, and that these changes may contribute to the enhanced extinction of nicotine‐seeking by NaB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号