首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The c-Jun NH(2)-terminal kinase (JNK) subgroup of mitogen-activated protein kinases has been implicated largely in stress responses, but an increasing body of evidence has suggested that JNK also plays a role in cell proliferation and survival. We examined the effect of JNK inhibition, using either SP600125 or specific antisense oligonucleotides, on cell proliferation and cell cycle progression. SP600125 was selective for JNK in vitro and in vivo versus other kinases tested including ERK, p38, cyclin-dependent protein kinase 1 (CDK1), and CDK2. SP600125 inhibited JNK activity and KB-3 cell proliferation with the same dose dependence, suggesting that inhibition of proliferation was a direct consequence of JNK inhibition. Inhibition of proliferation by SP600125 was associated with an increase in the G(2)-M and apoptotic fractions of cells but was not associated with p53 or p21 induction. Antisense oligonucleotides to JNK2 but not JNK1 caused highly significant inhibition of cell proliferation. Wild-type mouse fibroblasts responded similarly with proliferation inhibition and apoptosis induction, whereas c-jun(-/-) fibroblasts were refractory to the effects of SP600125, suggesting that JNK signaling to c-Jun is required for cell proliferation. Studies in synchronized KB-3 cells indicated that SP600125 delayed transit time through S and G(2)-M phases. Correspondingly, JNK activity increased in late S phase and peaked in late G(2) phase. During synchronous mitotic progression, cyclin B levels increased concomitant with phosphorylation of c-Jun, H1 histone, and Bcl-2. In the presence of SP600125, mitotic progression was prolonged, and c-Jun phosphorylation was inhibited, but neither H1 nor Bcl-2 phosphorylation was inhibited. However, the CDK inhibitor roscovitine inhibited mitotic Bcl-2 phosphorylation. These results indicate that JNK, and more specifically the JNK2 isoform, plays a key role in cell proliferation and cell cycle progression. In addition, conclusive evidence is presented that a kinase other than JNK, most likely CDK1 or a CDK1-regulated kinase, is responsible for mitotic Bcl-2 phosphorylation.  相似文献   

2.
The prevention of injury from reactive oxygen species is critical for cellular resistance to many death stimuli. Resistance to death from the superoxide generator menadione in the hepatocyte cell line RALA255-10G is dependent on down-regulation of the c-Jun N-terminal kinase (JNK)/AP-1 signaling pathway by extracellular signal-regulated kinase 1/2 (ERK1/2). Because protein kinase C (PKC) regulates both oxidant stress and JNK signaling, the ability of PKC to modulate hepatocyte death from menadione through effects on AP-1 was examined. PKC inhibition with Ro-31-8425 or bisindolylmaleimide I sensitized this cell line to death from menadione. Menadione treatment led to activation of PKCmicro, or protein kinase D (PKD), but not PKCalpha/beta, PKCzeta/lambda, or PKCdelta/. Menadione induced phosphorylation of PKD at Ser-744/748, but not Ser-916, and translocation of PKD to the nucleus. PKC inhibition blocked menadione-induced phosphorylation of PKD, and expression of a constitutively active PKD prevented death from Ro-31-8425/menadione. PKC inhibition led to a sustained overactivation of JNK and c-Jun in response to menadione as determined by in vitro kinase assay and immunoblotting for the phosphorylated forms of both proteins. Cell death from PKC inhibition and menadione treatment resulted from c-Jun activation, since death was blocked by adenoviral expression of the c-Jun dominant negative TAM67. PKC and ERK1/2 independently down-regulated JNK/c-Jun, since inhibition of either kinase failed to affect activation of the other kinase, and simultaneous inhibition of both pathways caused additive JNK/c-Jun activation and cell death. Resistance to death from superoxide therefore requires both PKC/PKD and ERK1/2 activation in order to down-regulate proapoptotic JNK/c-Jun signaling.  相似文献   

3.
Apolipoprotein E is a genetic risk factor for Alzheimer's disease, and the apoE protein is associated with beta-amyloid deposits in Alzheimer's disease brain. We examined signaling pathways stimulated by apoE in primary neurons in culture. ApoE and an apoE-derived peptide activated several intracellular kinases, including prominently extracellular signal-regulated kinase 1/2 (ERK1/2). ERK1/2 activation by apoE was blocked by an inhibitor of the low-density lipoprotein receptor family, the specific NMDA glutamate receptor antagonist MK 801 and other calcium channel blockers. Activation of apoE receptors also induced tyrosine phosphorylation of Dab1, an adaptor protein of apoE receptors, but experiments in Dab1 knockout neurons demonstrated that Dab1 was not necessary for ERK activation. In contrast, apoE treatment of primary neurons decreased activation of c-Jun N-terminal kinase, a kinase that interacts with another apoE receptor adaptor protein, c-Jun N-terminal kinase-interacting protein. This change also depended on interactions with the low-density lipoprotein receptor family but was independent of calcium channels. c-Jun N-terminal kinase deactivation by apoE was blocked by gamma-secretase inhibitors and pertussis toxin. These results demonstrate that apoE affects several signaling cascades in neurons: increased disabled phosphorylation, activation of the ERK1/2 pathway (dependent on calcium influx via the NMDA receptor) and inhibition of the c-Jun N-terminal kinase 1/2 pathway (dependent on gamma-secretase and G proteins).  相似文献   

4.
5.
Activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases is an early response of cells upon exposure to DNA-damaging agents. JNK-mediated phosphorylation of c-Jun is currently understood to stimulate the transactivating potency of AP-1 (e.g., c-Jun/c-Fos; c-Jun/ATF-2), thereby increasing the expression of AP-1 target genes. Here we show that stimulation of JNK1 activity is not a general early response of cells exposed to genotoxic agents. Treatment of NIH 3T3 cells with UV light (UV-C) as well as with methyl methanesulfonate (MMS) caused activation of JNK1 and an increase in c-Jun protein and AP-1 binding activity, whereas antineoplastic drugs such as mafosfamide, mitomycin C, N-hydroxyethyl-N-chloroethylnitrosourea, and treosulfan did not elicit this response. The phosphatidylinositol 3-kinase inhibitor wortmannin specifically blocked the UV-stimulated activation of JNK1 but did not affect UV-driven activation of extracellular regulated kinase 2 (ERK2). To investigate the significance of JNK1 for transactivation of c-jun, we analyzed the effect of UV irradiation on c-jun expression under conditions of wortmannin-mediated inhibition of UV-induced stimulation of JNK1. Neither the UV-induced increase in c-jun mRNA, c-Jun protein, and AP-1 binding nor the activation of the collagenase and c-jun promoters was affected by wortmannin. In contrast, the mitogen-activated protein kinase/ERK kinase inhibitor PD98056, which blocked ERK2 but not JNK1 activation by UV irradiation, impaired UV-driven c-Jun protein induction and AP-1 binding. Based on the data, we suggest that JNK1 stimulation is not essential for transactivation of c-jun after UV exposure, whereas activation of ERK2 is required for UV-induced signaling leading to elevated c-jun expression.  相似文献   

6.
7.
8.
9.
10.
The mode and timing of virally induced cell death hold the potential of regulating viral yield, viral transmission, and the severity of virally induced disease. Orbiviruses such as the epizootic hemorrhagic disease virus (EHDV) are nonenveloped and cytolytic. To date, the death of cells infected with EHDV, the signal transduction pathways involved in this process, and the consequence of their inhibition have yet to be characterized. Here, we report that the Ibaraki strain of EHDV2 (EHDV2-IBA) induces apoptosis, autophagy, a decrease in cellular protein synthesis, the activation of c-Jun N-terminal kinase (JNK), and the phosphorylation of the JNK substrate c-Jun. The production of infectious virions decreased upon inhibition of apoptosis with the pan-caspase inhibitor Q-VD-OPH (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone), upon inhibition of autophagy with 3-methyladenine or via the knockout of the autophagy regulator Atg5, or upon treatment of infected cells with the JNK inhibitor SP600125 or the cyclin-dependent kinase (CDK) inhibitor roscovitine, which also inhibited c-Jun phosphorylation. Moreover, Q-VD-OPH, SP600125, and roscovitine partially reduced EHDV2-IBA-induced cell death, and roscovitine diminished the induction of autophagy by EHDV2-IBA. Taken together, our results imply that EHDV induces and benefits from the activation of signaling pathways involved in cell stress and death.  相似文献   

11.
Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis.  相似文献   

12.
13.
14.
15.
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.  相似文献   

16.
The impairment of ubiquitin-proteasome system (UPS) is a cellular mechanism underlying the neurodegenerative process in Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) is one of the most potent neurotrophic factors promoting the growth and survival of mesencephalic dopamine (DA) neurons. To investigate whether GDNF has neuroprotective effects in a PD model induced by UPS impairment we administered GDNF by osmotic pump in C57BL/6 mice after nigrostriatal lesions with stereotactic injection of proteasome inhibitor lactacystin in the middle forebrain bundle. We found that lactacystin injection severely injured the nigral DA neurons and reduced the striatal levels of DA and its metabolites, while prolonged administration of GDNF at a sustained moderate dose for two weeks can significantly attenuate the lactacystin-induced loss of nigral DA neurons and striatal DA levels by 31% and 40%, respectively. We also investigated the molecular mechanisms for the neuroprotective effects of GDNF showing that lactacystin administration can cause the phosphorylation of extracellular signal-regulated kinase (ERK), p38MAPK (p38), and the c-Jun N-terminal kinase (JNK), whereas GDNF treatment can further enhance the phosphorylation of ERK and Akt but reduce the levels of JNK and p38. These results indicate that prolonged treatment with GDNF can protect the nigral DA neurons from the UPS impairment-induced degeneration. Several signaling path-ways including p38, JNK, Akt and ERK molecules seem to play an important role in this neuroprotection by GDNF.  相似文献   

17.
18.
Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. Previously, we reported that CIDEA and CIDEC are differentially regulated by insulin and contribute separately to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. However, the upstream signals of CIDE proteins remain unclear. Here, we investigated the signaling molecules involved in insulin regulation of CIDEA and CIDEC expression. The phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and PI-103 blocked both insulin-induced downregulation of CIDEA and upregulation of CIDEC. The Akt inhibitor API-2 and the c-Jun N-terminal kinase (JNK) inhibitor SP600125 selectively inhibited insulin regulation of CIDEA and CIDEC expression, respectively, whereas the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 did not. Small interfering RNA-mediated depletion of Akt1/2 prevented insulin-induced downregulation of CIDEA and inhibition of apoptosis. Depletion of JNK2, but not JNK1, inhibited insulin-induced upregulation of CIDEC and lipid droplet enlargement. Furthermore, insulin increased both Akt and JNK phosphorylation, which was abrogated by the PI3K inhibitors. These results suggest that insulin regulates CIDEA and CIDEC expression via PI3K, and it regulates expression of each protein via Akt1/2- and JNK2-dependent pathways, respectively, in human adipocytes.  相似文献   

19.
Recent studies of intracellular signal transduction mechanisms for the transforming growth factor-beta (TGF-beta) superfamily have focused on Smad proteins, but have paid little attention to mitogen-activated protein (MAP) kinase cascades. Here we demonstrate that growth/differentiation factor-5 (GDF-5), but neither bone morphogenetic protein-2 (BMP-2) nor TGF-beta1, fully promotes the early phase of the chondrogenic response by inducing cellular condensation followed by cartilage nodule formation in a mouse chondrogenic cell line, ATDC5. We investigated which, if any, of the three major types of MAP kinase plays a functional role in the promotion of chondrogenesis induced by GDF-5. GDF-5 induced phosphorylation of p38 MAP kinase and extracellular signal-regulated kinase (ERK) but not that of c-Jun N-terminal kinase (JNK). The phosphorylation of p38 MAP kinase was also induced by BMP-2 and TGF-beta1. An inhibitor of p38 and p38 beta MAP kinase, SB202190, showed complete inhibition of cartilage nodule formation but failed to affect alkaline phosphatase (ALP) activity induced by GDF-5. Expression of the type II collagen gene, a hallmark of chondrogenesis in vertebrates, was also induced by GDF-5 treatment and strongly suppressed by SB202190. On the other hand, although an inhibitor of MAP/ERK kinase, PD98059, inhibited the rapid phosphorylation of ERK by GDF-5, it inhibited neither ALP activity nor cartilage nodule formation induced by GDF-5. These results strongly suggest that the p38 MAP kinase cascade is involved in GDF-5 signaling pathways and that a role of the p38 MAP kinase pathway is necessary over a longer period to promote chondrogenesis in ATDC5 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号