首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transglycosylation reactions catalyzed by beta-1,3-D-glucanases (laminaranases) were used to synthesize a number of 4-methylumbelliferyl (MeUmb) (1-->3)-beta-D-gluco-oligosaccharides having the common structure [beta-D-Glcp-(1-->3)](n)-beta-D-Glcp-MeUmb, where n=1-5. The beta-1,3-D-glucanases used were purified from the culture liquid of Oerskovia sp. and from a homogenate of the marine mollusc Spisula sachalinensis. Laminaran and curdlan were used as (1-->3)-beta-D-glucan donor substrates, while MeUmb-beta-D-glucoside (MeUmbGlcp) was employed as a transglycosylation acceptor. Modification of [beta-D-Glcp-(1-->3)](2)-beta-D-Glcp-MeUmb (MeUmbG(3)) gives 4,6-O-benzylidene-D-glucopyranosyl or 4,6-O-ethylidene-D-glucopyranosyl groups at the non-reducing end of artificial oligosaccharides. The structures of all oligosaccharides obtained were solved by 1H and 13C NMR spectroscopy and electrospray tandem mass spectrometry. The synthetic oligosaccharides were shown to be substrates for a beta-1,3-1,4-D-glucanase from Rhodothermus marinus, which releases MeUmb from beta-di- and beta-triglucosides and from acetal-protected beta-triglucosides. When acting upon substrates with d.p.>3, the enzyme exhibits an endolytic activity, primarily cleaving off MeUmbGlcp and MeUmbG(2).  相似文献   

2.
The title pentasaccharide was synthesized via a 2+3 strategy. The disaccharide donor, 3-O-acetyl-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (8), was obtained by selective coupling of allyl 2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranoside with 3-O-acetyl-2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (4), followed by deallylation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranoside (12), was prepared by coupling of allyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranoside with 4, followed by deacetylation. Condensation of 8 with 12, followed by epoxidation, and deprotection, gave the target pentaoside.  相似文献   

3.
A complex of the enzymes from the liver of the marine mollusk Littorina kurila that hydrolyzes laminaran was investigated. Two (1-->3)-beta-d-glucanases (G-I and G-II) were isolated. The molecular mass of G-I as estimated by gel-permeation chromatography and SDS-PAGE analysis was 32 and 40kDa, respectively. The G-II molecular mass according to SDS-PAGE analysis was about 200kDa. The pH optimum for both G-I and G-II was pH 5.4. The G-I had narrow substrate specificity and hydrolyzed only the (1-->3)-beta-d-glucosidic bonds in the mixed (1-->3),(1-->6)- and (1-->3),(1-->4)-beta-d-glucans down to glucose and glucooligosaccharides. This enzyme acted with retention of the anomeric configuration and catalyzed a transglycosylation reaction. G-I was classified as the glucan endo-(1-->3)-beta-d-glucosidase (EC 3.2.1.39). G-II exhibited both exo-glucanase and beta-d-glucoside activities. This enzyme released from the laminaran glucose as a single product, but retained the anomeric center configuration and possessed transglycosylation activity. The hydrolysis rate of glucooligosaccharides by G-I decreased with an increase of the substrate's degree of polymerization. In addition to (1-->3)-beta-d-glucanase activity, the enzyme had the ability to hydrolyze p-nitrophenyl beta-d-glucoside and beta-d-glucobioses: laminaribiose, gentiobiose, and cellobiose, with the rate ratio of 50:12:1. G-II may correspond to beta-d-glucoside glucohydrolase (EC 3.2.1.21).  相似文献   

4.
Huang GL  Liu MX  Mei XY 《Carbohydrate research》2004,339(8):1453-1457
We describe a approach for the synthesis of a mixture of 3,4-epoxybutyl (1-->3)-beta-D-oligoglucosides. The particular (1-->3)-beta-D-glucan isolated from the cell walls of Saccharomyces cerevisiae was recovered from the aqueous medium as water-insoluble particles by the spray drying (GS) method, and it was characterized by FTIR spectroscopy. The acid-solubilized (1-->3)-beta-D-oligoglucosides were prepared by partial acid hydrolysis of glucan particles, which were qualitatively analyzed by fluorophore-assisted carbohydrate electrophoresis (FACE). The peracetylated 3-butenyl (1-->3)-beta-D-oligoglucosides were synthesized by treating peracetylated (1-->3)-beta-D-oligoglucosides with the 3-butenyl alcohols and a Lewis acid (SnCl4) catalyst. Epoxidation of the peracetylated 3-butenyl oligoglucosides took place with m-chloroperoxybenzoic acid (m-CPBA). NaOMe in dry methanol was used for the deacetylation of the blocked derivatives, to give the 3,4-epoxybutyl (1-->3)-beta-D-oligoglucoside mixture in an overall yield of 21%. The sample was analyzed by positive-ion electrospray ionization mass spectrometry (ESIMS). In a 3,4-epoxybutyl (1-->3)-beta-D-oligoglucoside-binding (1-->3)-beta-D-glucanase assay, we found that the (1-->3)-beta-D-glucanase was obviously inactivated by the 3,4-epoxybutyl (1-->3)-beta-D-oligoglucosides. At the same time, we found the 3,4-epoxybutyl (1-->3)-beta-D-oligoglucoside mixture was more active as compared to the underivatized oligoglucoside mixture in eliciting phytoalexin accumulation in tobacco cotyledon tissue. Furthermore, it could be kept for a longer time than a (1-->3)-beta-D-oligoglucoside mixture, which indicated it is much more stable than (1-->3)-beta-D-oligoglucosides.  相似文献   

5.
Acid-catalysed O-acetylation of D-maltulose furnished the corresponding per-O-acetylated fructopyranose derivative that, after in situ deprotection at O-2 by reaction with triphenylphosphane dibromide, gave open-chain 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl-(1 --> 4)-1,3,5-tri-O-acetyl-6-bromo-6-deoxy-D-fructose. Standard deprotection employing sodium methoxide in methanol at -30 degrees C, followed by treatment of the resulting free 6-bromodeoxymaltulose with sodium azide in N,N-dimethylformamide, allowed access to 6-azidodeoxymaltulose. Hydrogenation over Pearlman's catalyst, accompanied by intramolecular reductive amination, yielded the desired title compound. This route allows access to preparative quantities and to a range of novel analogues with improved biostability.  相似文献   

6.
The alpha-(1-->2)-L-galactosyltransferase from the albumen gland of the vineyard snail Helix pomatia exhibits high alpha-(1-->2)-L-fucosyltransferase activity and can be used to transfer L-fucose from GDP-L-fucose to terminal, non-reducing D-galactose residues of an oligosaccharide, thus providing facile access to a range of H-antigen-containing oligosaccharides. The enzymatic glycosylation was applied here on a milligram scale to a series of disaccharide acceptor substrates. Apparently the site of interglycosidic linkage between the terminal and subterminal acceptor sugar units is of little or no consequence. The homologous series of trisaccharides thus produced were fully characterised by NMR analysis of their peracetates.  相似文献   

7.
A model isopropyl alpha-glycoside of the beta-d-ManNAc-(1-->4)-d-Glc disaccharide has been prepared from lactose, avoiding the beta-mannosaminylation step. Three complementary approaches involving first the preparation and then the glycosidation of beta-thiophenyl donors of the protected disaccharides, (a) beta-d-ManNAc-(1-->4)-d-Glc, (b) beta-d-TalNAc-(1-->4)-d-Glc and (c) lactose, were compared. The best results were obtained employing a suitably protected lactose donor, and submitting its alpha-isopropyl glycoside to an amination with inversion in position 2' followed by an epimerization at C-4'.  相似文献   

8.
Enzymatic transglycosylation using p-nitrophenyl alpha-D-rhamnopyranoside as the glycosyl donor and 6equiv of ethyl 1-thio-alpha-D-rhamnopyranoside as the glycosyl acceptor yielded a D-rhamnooligosaccharide derivative. The reaction was catalyzed by jack bean alpha-mannosidase in a 1:1 (v/v) mixture of 0.1 M sodium citrate buffer (pH4.5)-MeCN at 25 degrees C. The enzyme exhibited high catalytic activity for the reaction, to afford in 32.1% isolated yield (based on donor substrate) ethyl alpha-D-rhamnopyranosyl-(1-->2)-1-thio-alpha-D-rhamnopyranoside, which is a derivative of the common oligosaccharide unit of the antigenic lipopolysaccharides from Pseudomonas.  相似文献   

9.
A water-insoluble alpha-(1-->3)-D-glucan (A) from Lentinus edodes was fractionated into 13 fractions in dimethyl sulfoxide containing 0.25 M lithium chloride (0.25 M LiCl-Me(2)SO). Five fractions were treated with sulfur trioxide-pyridine complex at 25 degrees C to synthesize water-soluble sulfated derivatives (S-A). The weight-average molecular weights, M(w), and intrinsic viscosities [eta], of the samples A and S-A were determined by multi-angler laser light scattering (MALLS), and viscosity. The M(w) dependence of [eta] and of the radius of gyration (z)(1/2), was found to be represented approximately by [eta]=4.9 x 10(-2) M(w)(0.67) (cm(3) g(-1)), and (z)(1/2)=4.8 x 10(-2) M(w)(0.54) (nm) for the alpha-glucan in 0.25 M LiCl-Me(2)SO in the M(w) range from 7.24 x 10(4) to 4.21 x 10(5), and by [eta]=6.8 x 10(-4) M(w) 1.06 (cm(3) g(-1)), and (z)(1/2)=9.4 x 10(-4) M(w)(0.92) (nm) for the sulfated alpha-glucan in aqueous 0.5 M NaCl in the M(w) range from 5.92 x 10(4) to 1.42 x 10(5) at 25 degrees C. The results indicate that the alpha-(1-->3)-D-glucan exists as a flexible chain in 0.25 M LiCl-Me(2)SO, and its sulfated derivative in 0.5 M NaCl aqueous has stiffer chains than the original. (13)C NMR indicated that intramolecular hydrogen bonding occurred in the sulfated alpha-glucan, causing the observed chain stiffness.  相似文献   

10.
Acid hydrolysis of cell wall-rich material from thalli of the hornwort Anthoceros caucasicus yielded substantial amounts of an unusual disaccharide (1). Hydrolysis of 1 yielded only GlcA, Gal and unhydrolysed 1. Compound 1 was identified as alpha-D-GlcpA-(1-->3)-L-Gal by 1H and 13C NMR spectroscopic analysis and by the susceptibility of its monosaccharide units to phosphorylation by enantiomer-specific kinases. Compound 1 was not detected in acid hydrolysates of other land plants including mosses, leafy and thalloid liverworts, lycopodiophytes and euphyllophytes; it was also absent from charophytes. The Anthoceros polysaccharide that yields 1 was partially extractable in cold aqueous buffer (pH 4.7) and Na(2)CO(3), but not in EDTA or NaOH, suggesting that it was not a typical pectin or hemicellulose. The yield of 1 from various polysaccharide fractions correlated with the yields of Xyl, suggesting a previously unreported polymer containing D-GlcA, L-Gal and Xyl. The existence of a unique polysaccharide in an evolutionarily isolated plant (Anthoceros) supports the view that major steps in plant phylogeny were accompanied by significant changes in cell wall composition.  相似文献   

11.
An extract from 50 kinds of fruits and vegetables was fermented to produce a new beverage. Natural fermentation of the extract was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Two new saccharides were found in this fermented beverage. The saccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methylated derivatives as well as MALDI-TOF MS and NMR measurements were used for structural confirmation. The (1)H and (13)C NMR signals of each saccharide were assigned using 2D-NMR including COSY, HSQC, HSQC-TOCSY, CH(2)-HSQC-TOCSY, and CT-HMBC experiments. The saccharides were identified as beta-D-fructopyranosyl-(2-->6)-beta-D-glucopyranosyl-(1-->3)-D-glucopyranose and beta-D-fructopyranosyl-(2-->6)-[beta-D-glucopyranosyl-(1-->3)]-D-glucopyranose.  相似文献   

12.
Four derivatives of 2(II)-deoxycellobiose were synthesized from d-glucal and acceptor sugars (d-glucose, d-xylose, d-mannose, and 2-deoxy-d-arabino-hexose) using a cellobiose phosphorylase from Cellvibrio gilvus. The enzyme was found to be an effective catalyst to synthesize the beta-(1-->4) linkage of 2-deoxy-d-arabino-hexopyranoside. The acceptor specificity for the d-glucal reaction was identical to that for the alpha-d-glucose 1-phosphate reaction, but the activity of d-glucal was approximately 500 times less than that of alpha-d-glucose 1-phosphate, using 10mM substrates.  相似文献   

13.
(1-->3)-beta-D-Glucans having various functional appendages (lactoside, ferrocene, pyrene, and porphyrin) can be prepared in an convenient, quantitative, and regioselective manner through regioselective bromination-azidation of curdlan to afford 6-azido-6-deoxycurdlan followed by chemoselective [3+2]-cycloadditions with various functional modules bearing a terminal alkyne group. The ability to monitor reaction conversions is an additional advantage of this synthetic approach over the conventional direct modifications on polysaccharides; the reaction can be readily monitored based on the intensity of azido peaks in the in situ attenuated total reflection infrared spectra.  相似文献   

14.
The reactivity of N-(2-aminophenyl)-d-glycero-d-gulo-heptonamide (adgha), with the group 12 cations, Zn(II), Cd(II), and Hg(II), was studied in DMSO-d6 solution. The studied system showed a selective coordination to Hg(II), and the products formed were characterized by 1H and 13C NMR in DMSO-d6 solution and fast atom bombardment (FAB+) mass spectra. The expected coordination compounds, [Hg(adgha)](NO3)2 and [Hg(adgha)2](NO3)2, were observed as unstable intermediates that decompose to bis-[2-(d-glycero-d-gulo-hexahydroxyhexyl)-benzimidazole-κN]mercury(II) dinitrate, [Hg(ghbz)2](NO3)2. The chemical transformation of the complexes was followed by NMR experiments, and the nature of the species formed is sustained by a theoretical study done using DFT methodology. From this study, we propose the structure of the complexes formed in solution, the relative stability of the species formed, and the possible role of the solvent in the observed transformations.  相似文献   

15.
This study is the first report on the effectiveness and specificity of alpha-acarviosinyl-(1-->4)-alpha-D-glucopyranosyl-(1-->6)-D-glucopyranosylidene-spiro-thiohydantoin (PTS-G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG2CNP) and amylose hydrolysis catalysed by human salivary alpha-amylase (HSA). Synthesis of PTS-G-TH was carried out by transglycosylation using acarbose as donor and glucopyranosylidene-spiro-thiohydantoin (G-TH) as acceptor. This new compound was found to be a much more efficient HSA inhibitor than G-TH. The inhibition is a mixed-noncompetitive type on both substrates and only one molecule of inhibitor binds to the enzyme. Kinetic constants calculated from secondary plots are in micromolar range. Values of K(EI) and K(ESI) are very similar in the presence of GalG2CNP substrate; 0.19 and 0.24 microM, respectively. Significant difference can be found for K(EI) and K(ESI) using amylose as substrate; 8.45 and 0.5 microM, respectively. These values indicate that inhibition is rather uncompetitive than competitive related to amylose hydrolysis.  相似文献   

16.
Mammalian Toll-like receptors (TLRs) play important roles in host immune defense. The activation of TLR and down-stream signaling pathways have great impact on human physiology. Chemically diverse microbial products as well as synthetic ligands serve as agonists for these receptors. Recently, synthetic TLR ligands are being exploited as useful therapeutic agents for a variety of diseases including infections, inflammatory diseases, and cancers. Alginate polymers and oligosaccharides are strong immune stimulants mediated by TLR2/4, but synthesis of alginate oligomers is rarely studied. Reported here are the design and chemical synthesis of two beta-(1-->4)-di- and beta-(1-->4)-tri-d-mannuronic acid neoglycolipids 1 and 2 as potential TLR ligands. By using 4,6-di-O-benzylidene-protected 1-thio mannoside 7 as a glycosyl donor, the diastereoselective beta-d-mannosylation protocol provides the beta-(1-->4)-d-mannobiose and beta-(1-->4)-d-mannotriose derivatives, which upon regioselective oxidation with TEMPO/BAIB oxidation system yield the corresponding beta-(1-->4)-d-mannuronic acid containing neoglycolipids 1 and 2.  相似文献   

17.
A new class of galactooligosaccharides has been identified from the terrestrial cyanobacterium Nostoc commune by MS and NMR techniques. These consist of beta-D-galactofuranosyl-(1-->6)-[beta-D-galactofuranosyl-(1-->6)]n-beta-d-1,4-anhydrogalactitols with n ranging from 2 to 8, corresponding to compounds designated 1 through 7. In total these saccharides amounted to approximately 0.35% of the dry thallus of N. commune, while in several other cyanobacteria they were not detected. Possibly they play some role in protection from damage by heat and desiccation as suggested by experiments with heterologous systems. For example, phosphoglucomutase (EC 2.7.5.1) from rabbit muscle was protected against heat inactivation by these oligosaccharides, and alpha-amylase (EC 3.2.1.1) from porcine pancreas by the oligosaccharides 6 and 7. The homologues of lower molecular mass, however, enhanced heat sensitivity of alpha-amylase. The viability of Escherichia coli was completely abolished by desiccation, whereas in the presence of 4 survival rates were approximately 50% of controls not subjected to desiccation. The newly identified saccharides are compared with known galactofuranose-based oligo- and polysaccharides and possible biological functions of them are discussed.  相似文献   

18.
Lim YR  Yeom SJ  Kim YS  Oh DK 《Bioresource technology》2011,102(5):4277-4280
The optimum conditions for the production of l-arabinose from debranched arabinan were determined to be pH 6.5, 75 °C, 20 g l−1 debranched arabinan, 42 U ml−1 endo-1,5-α-l-arabinanase, and 14 U ml−1 α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75 °C, 20 g l−1 sugar beet arabinan, 3 U ml−1 endo-1,5-α-l-arabinanase, and 24 U ml−1 α-l-arabinofuranosidase. Under the optimum conditions, 16 g l−1l-arabinose was obtained from 20 g l−1 debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l−1 h−1. This is the first reported trial for the production of l-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases.  相似文献   

19.
SCG, a purified beta-d-glucan, obtained from Sparassis crispa, exhibits various biological activities including an antitumor effect, enhancement of the hematopoietic response in cyclophosphamide-induced leukopenic mice, and induction of the production of cytokines. The mechanisms of these effects have been extensively investigated; however, an unambiguous structural characterization of SCG is yet to be achieved. It is well accepted that the biological effects of beta-glucan depend on its primary structures, conformation, and molecular weight. In the present study, we examine the difference of biological effects among beta-glucans, elucidate the primary structure of SCG, and compare with SPG from Schizophyllum commune using NMR spectroscopy. Our data reveal that SCG but not SPG induce cytokine production from bone marrow-derived dendritic cells (BMDCs) and their major structural units are a beta-(1-->3)-d-glucan backbone with single beta-(1-->6)-d-glucosyl side branching units every three residues.  相似文献   

20.
Fermented beverage of plant extract was prepared from about 50 kinds of vegetables and fruits. Natural fermentation was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Three kinds of saccharides have been found in this beverage and produced by fermentation. The saccharides isolated from the beverage using carbon-Celite column chromatography and preparative HPLC, were identified as a new saccharide, beta-d-fructopyranosyl-(2-->6)-d-glucopyranose, laminaribiose and maltose by examination of constituted sugars, GLC and GC-MS analyses of methyl derivatives and MALDI-TOF-MS and NMR measurements of the saccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号