首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mehnert T  Routh A  Judge PJ  Lam YH  Fischer D  Watts A  Fischer WB 《Proteins》2008,70(4):1488-1497
Vpu from HIV-1 is an 81 amino acid type I integral membrane protein which consists of a cytoplasmic and a transmembrane (TM) domain. The TM domain is known to alter membrane permeability for ions and substrates when inserted into artificial membranes. Peptides corresponding to the TM domain of Vpu (Vpu(1-32)) and mutant peptides (Vpu(1-32)-W23L, Vpu(1-32)-R31V, Vpu(1-32)-S24L) have been synthesized and reconstituted into artificial lipid bilayers. All peptides show channel activity with a main conductance level of around 20 pS. Vpu(1-32)-W23L has a considerable flickering pattern in the recordings and longer open times than Vpu(1-32). Whilst recordings for Vpu(1-32)-R31V are almost indistinguishable from those of the WT peptide, recordings for Vpu(1-32)-S24L do not exhibit any noticeable channel activity. Recordings of WT peptide and Vpu(1-32)-W23L indicate Michaelis-Menten behavior when the salt concentration is increased. Both peptide channels follow the Eisenman series I, indicative for a weak ion channel with almost pore like characteristics.  相似文献   

2.
The viral protein U (Vpu) encoded by HIV-1 has been shown to assist in the detachment of virion particles from infected cells. Vpu forms cation-specific ion channels in host cells, and has been proposed as a potential drug target. An understanding of the mechanism of ion transport through Vpu is desirable, but remains limited because of the unavailability of an experimental structure of the channel. Using a structure of the pentameric form of Vpu – modeled and validated based on available experimental data – umbrella sampling molecular dynamics simulations (cumulative simulation time of more than 0.4 µs) were employed to elucidate the energetics and the molecular mechanism of ion transport in Vpu. Free energy profiles corresponding to the permeation of Na+ and K+ were found to be similar to each other indicating lack of ion selection, consistent with previous experimental studies. The Ser23 residue is shown to enhance ion transport via two mechanisms: creating a weak binding site, and increasing the effective hydrophilic length of the channel, both of which have previously been hypothesized in experiments. A two-dimensional free energy landscape has been computed to model multiple ion permeation, based on which a mechanism for ion conduction is proposed. It is shown that only one ion can pass through the channel at a time. This, along with a stretch of hydrophobic residues in the transmembrane domain of Vpu, explains the slow kinetics of ion conduction. The results are consistent with previous conductance studies that showed Vpu to be a weakly conducting ion channel.  相似文献   

3.
Strebel K 《Molecular cell》2004,14(2):150-152
Vpu is an HIV-encoded protein that enhances virus release. Previously, this activity was correlated with an intrinsic ion channel activity of Vpu. In this issue of Molecular Cell, Hsu at all. propose an alternative mechanism: they suggest that Vpu functions by inhibiting another ion channel, TASK-1.  相似文献   

4.
The human immunodeficiency virus type I (HIV-1) Vpu protein is 81 residues long and has two cytoplasmic and one transmembrane (TM) helical domains. The TM domain oligomerizes to form a monovalent cation selective ion channel and facilitates viral release from host cells. Exactly how many TM domains oligomerize to form the pore is still not understood, with experimental studies indicating the existence of a variety of oligomerization states. In this study, molecular dynamics (MD) simulations were performed to investigate the propensity of the Vpu TM domain to exist in tetrameric, pentameric, and hexameric forms. Starting with an idealized α-helical representation of the TM domain, a thorough search for the possible orientations of the monomer units within each oligomeric form was carried out using replica-exchange MD simulations in an implicit membrane environment. Extensive simulations in a fully hydrated lipid bilayer environment on representative structures obtained from the above approach showed the pentamer to be the most stable oligomeric state, with interhelical van der Waals interactions being critical for stability of the pentamer. Atomic details of the factors responsible for stable pentamer structures are presented. The structural features of the pentamer models are consistent with existing experimental information on the ion channel activity, existence of a kink around the Ile17, and the location of tetherin binding residues. Ser23 is proposed to play an important role in ion channel activity of Vpu and possibly in virus propagation.  相似文献   

5.
In a number of membrane-bound viruses, ion channels are formed by integral membrane proteins. These channel proteins include M2 from influenza A, NB from influenza B, and, possibly, Vpu from HIV-1. M2 is important in facilitating uncoating of the influenza A viral genome and is the target of amantadine, an anti-influenza drug. The biological roles of NB and Vpu are less certain. In all cases, the protein contains a single transmembrane alpha-helix close to its N-terminus. Channels can be formed by homo-oligomerization of these proteins, yielding bundles of transmembrane helices that span the membrane and surround a central ion-permeable pore. Molecular modeling may be used to integrate and interpret available experimental data concerning the structure of such transmembrane pores. This has proved successful for the M2 channel domain, where two independently derived models are in agreement with one another, and with solid-state nuclear magnetic resonance (NMR) data. Simulations based on channel models may yield insights into possible ion conduction and selectivity mechanisms.  相似文献   

6.
Vpu, an 81-residue membrane protein encoded by the genome of HIV-1, is involved in CD4 degradation and facilitates virion budding from infected cells. The latter activity requires an intact transmembrane (TM) domain; however, the mechanism remains unclear. Vpu forms ion channels, an activity linked to the TM domain and envisioned to arise by oligomerization. The precise number of Vpu monomers that structure the channel is not yet known. To address this issue, we have synthesized tetrameric and pentameric proteins consisting of a carrier template to which four or five peptides corresponding to the TM domain of Vpu are attached. Ketoxime-forming chemoselective ligation efficiently ligated four and five copies, respectively, of the linear transmembrane peptide that was solubilized by the addition of a cleavable polyethylene glycol-polyamide auxiliary to a template. Purified tetrameric and pentameric proteins, denoted as T(4)Vpu and T(5)Vpu, exhibit the predicted mass as determined by MS analysis and fold with a high helical content as evidenced by CD. Both T(4)Vpu and T(5)Vpu, after reconstitution in lipid bilayers, form discrete ion channels of distinct conductance and high propensity to be open. The most frequent openings have a single channel conductance of 42 +/- 5 pS for T(4)Vpu and 76 +/- 5 pS for T(5)Vpu in 0.5m KCl. These findings validate the notion that the channels formed by Vpu result from the self-assembly of monomers. We conclude that a five-helix bundle of the TM of Vpu may approximate the structural motif underlying the oligomeric state of the conductive channel.  相似文献   

7.
Towards a mechanism of function of the viral ion channel Vpu from HIV-1   总被引:1,自引:0,他引:1  
Vpu, an integral membrane protein encoded in HIV-1, is implicated in the release of new virus particles from infected cells, presumably mediated by ion channel activity of homo-oligomeric Vpu bundles. Reconstitution of both full length Vpu(1-81) and a short, the transmembrane (TM) domain comprising peptide Vpu(1-32) into bilayers under a constant electric field results in an asymmetric orientation of those channels. For both cases, channel activity with similar kinetics is observed. Channels can open and remain open within a broad series of conductance states even if a small or no electric potential is applied. The mean open time for Vpu peptide channels is voltage-independent. The rate of channel opening shows a biphasic voltage activation, implicating that the gating is influenced by the interaction of the dipole moments of the TM helices with an electric field.  相似文献   

8.
Part of the genome of the human immunodeficiency virus type 1 (HIV-1) encodes for a short membrane protein Vpu, which has a length of 81 amino acids. It has two functional roles: (i) to downregulate CD4 and (ii) to support particle release. These roles are attributed to two distinct domains of the peptide, the cytoplasmic and transmembrane (TM) domains, respectively. It has been suggested that the enhanced particle release function is linked to the ion channel activity of Vpu, with a slight preference for cations over anions. To allow ion flux across the membrane Vpu would be required to assemble in homooligomers to form functional water-filled pores. In this study molecular dynamics simulations are used to address the role of particular amino acids in 4, 5, and 6 TM helix bundle structures. The helices (Vpu(6-33)) are extended to include hydrophilic residues such as Glu, Tyr, and Arg (EYR motif). Our simulations indicate that this motif destabilizes the bundles at their C-terminal ends. The arginines point into the pore to form a positive charged ring that could act as a putative selectivity filter. The helices of the bundles adopt slightly higher average tilt angles with decreasing number of helices. We also suggest that the helices are kinked. Conductance measurements on a peptide (Vpu(1-32)) reconstituted into lipid membranes show that the peptide forms ion channels with several conductance levels.  相似文献   

9.
The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in β-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.  相似文献   

10.
The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels and enhances the process of virion budding and release. Mutagenesis studies have shown that the N-terminal transmembrane domain primarily controls both of these activities. Here we report that the Vpu ion channel is inhibited by the amiloride derivatives 5-(N,N-hexamethylene)amiloride and 5-(N,N-dimethyl)amiloride but not by amiloride itself, nor by amantadine. Hexamethyleneamiloride also inhibits budding of virus-like particles from HeLa cells expressing HIV-1 Gag and Vpu proteins. These results confirm the link between Vpu ion channel activity and the budding process and also suggest that amiloride derivatives might have useful anti-HIV-1 properties.  相似文献   

11.
12.
Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2-81). Vpu(2-37) encompasses the N-terminal transmembrane alpha-helix; Vpu(2-51) spans the N-terminal transmembrane helix and the first cytoplasmic alpha-helix; Vpu(28-81) includes the entire cytoplasmic domain containing the two C-terminal amphipathic alpha-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane alpha-helix. The C-terminal alpha-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.  相似文献   

13.
Abstract

Vpu, an integral membrane protein encoded in HIV-1, is implicated in the release of new virus particles from infected cells, presumably mediated by ion channel activity of homo- oligomeric Vpu bundles.

Reconstitution of both full length Vpu1–81 and a short, the transmembrane (TM) domain comprising peptide Vpu1-32 into bilayers under a constant electric field results in an asymmetric orientation of those channels. For both cases, channel activity with similar kinetics is observed. Channels can open and remain open within a broad series of conductance states even if a small or no electric potential is applied.

The mean open time for Vpu peptide channels is voltage-independent. The rate of channel opening shows a biphasic voltage activation, implicating that the gating is influenced by the interaction of the dipole moments of the TM helices with an electric field.  相似文献   

14.
HIV-1 Vpu is a small, single-span membrane protein with two attributed functions that increase the virus'' pathogenicity: degradation of CD4 and inactivation of BST-2. Vpu has also been shown to posses ion channel activity, yet no correlation has been found between this attribute and Vpu''s role in viral release. In order to gain further insight into the channel activity of Vpu we devised two bacteria-based assays that can examine this function in detail. In the first assay Vpu was over-expressed, such that it was deleterious to bacterial growth due to membrane permeabilization. In the second and more sensitive assay, the channel was expressed at low levels in K+ transport deficient bacteria. Consequently, Vpu expression enabled the bacteria to grow at otherwise non permissive low K+ concentrations. Hence, Vpu had the opposite impact on bacterial growth in the two assays: detrimental in the former and beneficial in the latter. Furthermore, we show that channel blockers also behave reciprocally in the two assays, promoting growth in the first assay and hindering it in the second assay. Taken together, we investigated Vpu''s channel activity in a rapid and quantitative approach that is amenable to high-throughput screening, in search of novel blockers.  相似文献   

15.
HIV‐1 Vpu is an 81‐residue protein with a single N‐terminal transmembrane (TM) helical segment that is involved in the release of new virions from host cell membranes. Vpu and its TM segment form ion channels in phospholipid bilayers, presumably by oligomerization of TM helices into a pore‐like structure. We describe measurements that provide new constraints on the oligomerization state and supramolecular structure of residues 1–40 of Vpu (Vpu1–40), including analytical ultracentrifugation measurements to investigate oligomerization in detergent micelles, photo‐induced crosslinking experiments to investigate oligomerization in bilayers, and solid‐state nuclear magnetic resonance measurements to obtain constraints on intermolecular contacts between and orientations of TM helices in bilayers. From these data, we develop molecular models for Vpu TM oligomers. The data indicate that a variety of oligomers coexist in phospholipid bilayers, so that a unique supramolecular structure can not be defined. Nonetheless, since oligomers of various sizes have similar intermolecular contacts and orientations, molecular models developed from our data are most likely representative of Vpu TM oligomers that exist in host cell membranes.  相似文献   

16.
Abstract

The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein ‘u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.  相似文献   

17.
Montal M 《FEBS letters》2003,552(1):47-53
Vpu, a membrane protein from human immunodeficiency virus-1, folds into two distinct structural domains with different biological activities: a transmembrane (TM) helical domain involved in the budding of new virions from infected cells, and a cytoplasmic domain encompassing two amphipathic helices, which is implicated in CD4 degradation. The molecular mechanism by which Vpu facilitates virion budding is not clear. This activity of Vpu requires an intact TM helical domain. And it is known that oligomerization of the VPU TM domain results in the formation of sequence-specific, cation-selective channels. It has been shown that the channel activity of Vpu is confined to the TM domain, and that the cytoplasmic helices regulate the lifetime of the Vpu channel in the conductive state. Structure-function correlates based on the convergence of information about the channel activity of Vpu reconstituted in lipid bilayers and on its 3-D structure in membranes by a combination of solution and solid-state nuclear magnetic resonance spectroscopy may provide valuable insights to understand the role of Vpu in the pathogenesis of AIDS and for drug design aimed to block channel activity.  相似文献   

18.
Viral ion channels: structure and function   总被引:9,自引:0,他引:9  
Viral ion channels are short auxiliary membrane proteins with a length of ca. 100 amino acids. They are found in enveloped viruses from influenza A, influenza B and influenza C (Orthomyxoviridae), and the human immunodeficiency virus type 1 (HIV-1, Retroviridae). The channels are called M2 (influenza A), NB (influenza B), CM2 (influenza C) and Vpu (HIV-1). Recently, in Paramecium bursaria chlorella virus (PBCV-1, Phycodnaviridae), a K+ selective ion channel has been discovered. The viral channels form homo oligomers to allow an ion flux and represent miniaturised systems. Proton conductivity of M2 is established; NB, Vpu and the potassium channel from PBC-1 conduct ions; for CM2 ion conductivity is still under proof. This review summarises the current knowledge of these short viral membrane proteins. Their discovery is outlined and experimental evidence for their structure and function is discussed. Studies using computational methods are presented as well as investigations of drug-protein interactions.  相似文献   

19.
Structural pore models are generated for Vpu1–32WT from HIV-1 as well as for three mutants W23L, S24L and R31V. A computational methodology is employed which samples the whole conformational space of the pentameric assemblies of Vpu. The analysis of the related energy landscape reveals a small set of reasonable pore models, which are thoroughly investigated regarding their structural properties as well as their putative stability under native-like conditions. The models are also discussed in respect of earlier experimental findings about their channel activities. The study proposes functional pores reflecting the experimentally found conductance states of Vpu and its mutants.  相似文献   

20.
The HIV-1 accessory protein Vpu counteracts a host factor that restricts virion release from infected cells. Here we show that the interferon-induced cellular protein BST-2/HM1.24/CD317 is such a factor. BST-2 is downregulated from the cell surface by Vpu, and BST-2 is specifically expressed in cells that support the vpu phenotype. Exogenous expression of BST-2 inhibits HIV-1 virion release, while suppression of BST-2 relieves the requirement for Vpu. Downregulation of BST-2 requires both the transmembrane/ion channel domain and conserved serines in the cytoplasmic domain of Vpu. Endogenous BST-2 colocalizes with the HIV-1 structural protein Gag in endosomes and at the plasma membrane, suggesting that BST-2 traps virions within and on infected cells. The unusual structure of BST-2, which includes a transmembrane domain and a lumenal GPI anchor, may allow it to retain nascent enveloped virions on cellular membranes, providing a mechanism of viral restriction counteracted by a specific viral accessory protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号