首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Cells of the vertebrate neural crest (crest cells) are an invaluable model system to address cell fate specification. Crest cells are amenable to tissue culture, and they differentiate to a variety of neuronal and nonneuronal cell types. Earlier studies have determined that bone morphogenetic proteins (BMP-2, -4, and -7) and agents that elevate intracellular cyclic AMP (cAMP) stimulate the development of the sympathoadrenal (SA, adrenergic) lineage in neural crest cultures. To investigate whether interactive mechanisms between signaling pathways influence crest cell differentiation, we characterized the combinatorial effects of BMP-2 and cAMP-elevating agents on the development of quail trunk neural crest cells in primary culture. We report that the cAMP signaling pathway modulates both positive and negative signals influencing the development of SA cells. Specifically, we show that moderate activation of cAMP signaling promotes, in synergy with BMP-2, SA cell development and the expression of the SA lineage-determining gene Phox2a. By contrast, robust activation of cAMP signaling opposes, even in the presence of BMP-2, SA cell development and the expression of the SA lineage-determining ASH-1 and Phox2 genes. We conclude that cAMP signaling acts as a bimodal regulator of SA cell development in neural crest cultures.  相似文献   

2.
3.
The neural crest-derived precursors of the sympathoadrenal lineage depend on environmental cues to differentiate as sympathetic neurons and pheochromocytes. We have used the monoclonal antibody A2B5 as a marker for neuronal differentiation and antisera against catecholamine synthesis enzymes to investigate the differentiation of catecholaminergic cells in cultures of quail neural crest cells. Cells corresponding phenotypically to sympathetic neurons and pheochromocytes can be identified in neural crest cell cultures after 5-6 days in vitro. Expression of the A2B5 antigen precedes expression of immunocytochemically detectable levels of tyrosine hydroxylase in cultured neural crest cells. Glucocorticoid treatment decreases the proportion of TH+ neural crest cells that express neuronal traits. We conclude that environmental cues normally encountered by sympathoadrenal precursors in vivo can influence the differentiation of a subpopulation of cultured neural crest cells in the sympathoadrenal lineage.  相似文献   

4.
Chimeric mice, generated by aggregating preimplantation embryos, have been instrumental in the study of the development of coat color patterns in mammals. This approach, however, does not allow for direct experimental manipulation of the neural crest cells, which are the precursors of melanoblasts. We have devised a system that allows assessment of the developmental potential and migration of neural crest cells in vivo following their experimental manipulation in vitro. Cultured C57Bl/6 neural crest cells were microinjected in utero into neurulating Balb/c or W embryos and shown to contribute efficiently to pigmentation in the host animal. The resulting neural crest chimeras showed, however, different coat pigmentation patterns depending on the genotype of the host embryo. Whereas Balb/c neural crest chimeras showed very limited donor cell pigment contribution, restricted largely to the head, W mutant chimeras displayed extensive pigmentation throughout, often exceeding 50% of the coat. In contrast to Balb/c chimeras, where the donor melanoblasts appeared to have migrated primarily in the characteristic dorsoventral direction, in W mutants the injected cells appeared to migrate in the longitudinal as well as the dorsoventral direction, as if the cells were spreading through an empty space. This is consistent with the absence of a functional endogenous melanoblast population in W mutants, in contrast to Balb/c mice, which contain a full complement of melanocytes. Our results suggest that the W mutation disturbs migration and/or proliferation of endogenous melanoblasts. In order to obtain information on clonal size and extent of intermingling of donor cells, two genetically marked neural crest cell populations were mixed and coinjected into W embryos. In half of the tricolored chimeras, no co-localization of donor crest cells was observed, while, in the other half, a fine intermingling of donor-derived colors had occurred. These results are consistent with the hypothesis that pigmented areas in the chimeras can be derived from extensive proliferation of a few donor clones, which were able to colonize large territories in the host embryo. We have also analyzed the development of pigmentation in neural crest cultures in vitro, and found that neural tubes explanted from embryos carrying wt or weak W alleles produced pigmented melanocytes while more severe W genotypes were associated with deficient pigment formation in vitro.  相似文献   

5.
6.
Neural crest cells obtained from explanted neural tubes take up, express, and retain exogenous DNA applied by the CaPO4 co-precipitation method during their differentiation into melanocytes. High efficiencies of gene transfer were obtained with both supercoiled DNA and intact phage particles; linear DNA or DNA from the phage yielded very low efficiencies. There is some evidence that transferred gene expression is differentiation dependent. The system should be useful for studies concerned with the analysis of cell developmental genes and their regulatory elements.  相似文献   

7.
The process of vascular smooth muscle cell (vSMC) differentiation is critical to embryonic angiogenesis. However, despite its importance, the vSMC differentiation program remains largely undefined. Murine gene disruption studies have identified several gene products that are necessary for vSMC differentiation, but these methodologies cannot establish whether or not a factor is sufficient to initiate the differentiation program. A gain-of-function system consisting of normal vSMC progenitor cells would serve as a useful complement to whole animal loss-of-function studies. We use such a system here, namely freshly isolated rat neural crest stem cells (NCSCs), to show that activation of the calcineurin signaling pathway is sufficient to drive these cells toward a smooth muscle fate. In addition, we present data suggesting that transforming growth factor (TGF)-beta1, which also causes NCSCs to differentiate into smooth muscle, activates calcineurin signaling in NCSCs, leading to a model in which activation of calcineurin signaling is the mechanism by which TGF-beta1 causes SMC differentiation in these cells.  相似文献   

8.
Cells constituting the sympathoadrenal (SA) cell lineage originate from the neural crest and acquire a catecholaminergic fate following migration to the dorsal aorta. Subsequently, SA cells migrate to sites widely dispersed throughout the body. In addition to endocrine chromaffin and ”small intensely fluorescent” cells in adrenal glands and in extra-adrenal tissues such as the paraganglia, this lineage also includes neurones located in sympathetic ganglia and in the adrenal gland. It is widely assumed that these cells are all derived from the same precursors, which then differentiate along divergent pathways in response to different external stimuli. During embryonic differentiation, SA cells lose some of their early traits and acquire other distinguishing features. To help understand how the lineage diverges in terms of phenotype and function, this article examines the cellular expression of a variety of ”marker” proteins that characterize the individuals of the lineage. In particular, differences between adrenal medullary adrenergic and noradrenergic chromaffin cells in the expression of proteins, such as the neural adhesion molecule L1, the growth-associated protein GAP-43 and molecules involved in the secretory process, are emphasized. Factors that might differentially regulate such molecular markers in these cells are discussed. Received: 29 December 1998 / Accepted: 1 April 1999  相似文献   

9.
In amniotes, the developmental potentials of neural crest cells differ between the cranium and the trunk. These differences may be attributable to the different expression patterns of Hox genes between cranial and trunk neural crest cells. However, little is known about the factors that control Hox genes expression in neural crest cells. The present data demonstrate that retinoic acid (RA) treatment and the activation of Wnt signaling induce Hoxa2 and Hoxd9 expression, respectively, in mouse mesencephalic neural crest cells, which never express Hox genes in vivo. Furthermore, Wnt signaling suppresses the induction of Hoxa2. We also demonstrate that these factors participate in the maintenance of Hoxa2 and Hoxd9 expression in mouse trunk neural crest cells. Our results suggest that RA and Wnt signaling function as environmental factors that regulate the expression of Hoxa2 and Hoxd9 in mouse neural crest cells.  相似文献   

10.
Previous work has demonstrated that a reconstituted basement membrane (RBM)-like matrix stimulates the development of catecholamine (CA)-containing cells in neural crest cultures. In the present work, we found that the proportion of tyrosine hydroxylase and somatostatin immunoreactive cells was increased substantially by an overlay of the RBM matrix. In contrast, there was little or no stimulation of the development of cells possessing several other phenotypic markers including A2B5, E/C8, vasoactive intestinal polypeptide, and the low and middle molecular weight avian neurofilament proteins. These results demonstrate that the response of neural crest cells to the RBM matrix is specific to a small set of phenotypes. In addition, we demonstrate that the phenotype of the adrenergic cells which develop in the presence of the RBM gel overlay is very similar, if not identical, to that of the adrenergic cells which differentiate in the absence of the RBM gel.  相似文献   

11.
12.
13.
Cellular therapies represent a new frontier in the treatment of neurological diseases. Accumulating evidence from preclinical studies of animal models suggests that mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, are an effective therapy for neurological diseases. In this study, we established human MSC lines from both cranial bone marrow (cBMMSCs) and iliac crest bone marrow (iBMMSCs) from the same donors and found that cBMMSCs show higher expression of neural crest-associated genes than iBMMSCs. Moreover, as observed in both mRNA and protein assays, neurogenic-induced cells from cBMMSCs expressed significantly higher levels of neural markers, such as NESTIN, SLUG, SOX9, and TWIST, than those from iBMMSCs. Thus, cBMMSCs showed a greater tendency than iBMMSCs to differentiate into neuron-like cells.  相似文献   

14.
Catecholamine accumulation in chick embryos of stages 16 to 24 was investigated using formaldehyde-induced fluorescence. Fluorescence first appeared at stage 21 in the anterior sympathetic chain. After L-DOPA treatment, this fluorescence appeared at stage 18. Noradrenaline could not advance the onset of fluorescence or reconstitute fluorescence after its depletion by reserpine at stages 22 to 24. Under no conditions could fluorescence be identified in neural crest cells prior to their aggregation to form the primary sympathetic chain. Noradrenaline induced fluorescence in the neural tube, notochord, myotome, sclerotome, gut mesenchyme and suprarenal cortical cells. In addition to these structures, the dorsal pancreas and some blood cells were fluorescent after l-DOPA treatment. The implication of the results for the neural crest origin of APUD (Amine Precursor Uptake Decaboxylase) cells is considered.  相似文献   

15.
The goal of our work is to understand the mechanisms which regulate the differentiation of embryonic neural crest cells into a number of adult cell types, including several classes of neurons. As one aspect of this analysis, the relationship between DNA synthesis and the ontogeny of cells with catecholamines and somatostatin-like immunoreactivity (SLI) in neural crest cell cultures has been investigated. Most of the precursors of the catecholamine- and SLI-positive cells carry out DNA synthesis. As these cells differentiate, their ability to carry out DNA synthesis declines. However, a small percentage of cells continue to synthesize DNA after they become catecholamine or SLI positive. There is no apparent difference between the temporal pattern of DNA synthesis in the precursors of catecholamine-positive cells with SLI and those without SLI. Thus, the time of withdrawal from the cell cycle does not distinguish the lineage of cells that are catecholamine and SLI positive from those that are catecholamine positive and SLI negative.  相似文献   

16.
Expression of Schwann cell markers by mammalian neural crest cells in vitro   总被引:3,自引:0,他引:3  
During embryonic development, neural crest cells differentiate into a wide variety of cell types including Schwann cells of the peripheral nervous system. In order to establish when neural crest cells first start to express a Schwann cell phenotype immunocytochemical techniques were used to examine rat premigratory neural crest cell cultures for the presence of Schwann cell markers. Cultures were fixed for immunocytochemistry after culture periods ranging from 1 to 24 days. Neural crest cells were identified by their morphology and any neural tube cells remaining in the cultures were identified by their epithelial morphology and immunocytochemically. As early as 1 to 2 days in culture, approximately one third of the neural crest cells stained with m217c, a monoclonal antibody that appears to recognize the same antigen as rat neural antigen-1 (RAN-1). A similar proportion of cells were immunoreactive in cultures stained with 192-IgG, a monoclonal antibody that recognizes the rat nerve growth factor receptor. The number of immunoreactive cells increased with time in culture. After 16 days in culture, nests of cells, many of which had a bipolar morphology, were present in the area previously occupied by neural crest cells. The cells in the nests were often associated with neurons and were immunoreactive for m217c, 192-IgG and antibody to S-100 protein and laminin, indicating that the cells were Schwann cells. At all culture periods examined, neural crest cells did not express glial fibrillary acidic protein. These results demonstrate that cultured premigratory neural crest cells express early Schwann cell markers and that some of these cells differentiate into Schwann cells. These observations suggest that some neural crest cells in vivo may be committed to forming Schwann cells and will do so provided that they then proceed to encounter the correct environmental cues during embryonic development.  相似文献   

17.
Lectin cytochemistry was used to identify surface epitopes selectively expressed by chromaffin cell chemoreceptors (glomus cells) in the rat carotid body. Unexpectedly, these studies revealed that binding sites for peanut agglutinin (PNA; Arachis hypogea) were highly expressed by all neuroendocrine derivatives of the sympathoadrenal neural crest, including glomus cells, small, intensely fluorescent cells, and adrenal chromaffin cells in situ. In contrast, principal sympathetic neurons did not express PNA receptors. PNA binding was inhibited by 2% galactose. To determine whether expression of PNA receptors was selectively induced by neuroendocrine differentiation of sympathoadrenal precursors, we compared PNA labeling of embryonic sympathoblasts in the presence of either nerve growth factor (NGF) or the synthetic glucocorticoid dexamethasone (DEX). Dex-treated cells, which expressed several neuroendocrine traits, bound PNA, whereas NGF-treated neuronal derivatives did not. In addition, to examine whether expression of existing PNA receptors was down-regulated by neuronal differentiation of chromaffin cells, we compared labeling of PC12 cells, which normally bind PNA, in the presence and absence of NGF. Although PC12 cells acquired characteristic neuronal morphologies in the presence of NGF, they did not lose PNA labeling, even after 8 days of NGF treatment. These findings indicate that neuronal and neuroendocrine derivatives of the sympathoadrenal lineage can be distinguished by differential expression of carbohydrate epitopes and suggest that PNA receptors are induced by neuroendocrine differentiation. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Appearance of nerve growth factor receptors on cultured neural crest cells   总被引:2,自引:0,他引:2  
Light microscopic radioautography of differentiating quail neural crest cultures (1 to 2 weeks after explanation) incubated with Iodine-125-labeled nerve growth factor (125I-NGF) revealed that approximately 35% of the cells bound NGF. The binding was specific and saturable; it was blocked by an excess of nonradioactive NGF, and was not detected following incubation with biologically inactive 125I-NGF. In addition, the binding did not appear to be blocked or diminished by insulin. Cell cultures prepared from somites or notochord showed no specific binding of 125I-NGF. Melanocytes comprised approximately 10% of the cell population in these cultures and appeared to be unlabeled. The subpopulation of cells with NGF receptors that were morphologically similar to other non-melanocyte unlabeled cells present in the neural crest cultures are probably the targets of the factor during differentiation and development. In contrast, there was no evidence of 125I-NGF binding by premigratory neural crest (adherent to the isolated neural tube) or by early migratory neural crest cells (24 hr after explantation). Both of these types of neural crest cells are relatively undifferentiated. The cells of the neural tube were also unlabeled. The binding of 125I-NGF to differentiating neural crest cells was not noticeably diminished by a brief pretreatment with trypsin or Dispase, enzymes used in the isolation of neural tubes. Hence, the absence of NGF receptors on premigratory neural crest and early migratory neural crest cultures was not due to enzymatic alterations of the receptor. It seems, therefore, that receptors for NGF appear on neural crest cells during the time when these cells are acquiring their phenotypic characteristics.  相似文献   

19.
Hox genes, neural crest cells and branchial arch patterning.   总被引:6,自引:0,他引:6  
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.  相似文献   

20.
Murine erythroleukemic cells induced to differentiate in vitro with dimethylsulfoxide provide a model for events involved in the regulated expression of the globin genes. Here we examine alpha- and beta-globin gene expression in such cells which contain no detectable globin RNA prior to induction. To quantitate alpha- and beta-globin RNAs in cellular RNA samples by molecular hybridization techniques, highly radioactive complementary DNAs were synthesized using mouse alpha- and beta-globin RNAs purified by formamide gel electrophoresis. Maximally induced erythroleukemic cells and mouse reticulocytes contain nearly equal relative amounts of alpha- and beta-globin RNA. During the period in which globin RNA accumulates in differentiating erythroleukemic cells, however, alpha- and beta-globin RNAs are not present in equivalent amounts. alphaRNA is present in substantial excess (alpha/beta ratio 3.7) early in induction, and the alpha/beta RNA ratio progressively approaches 1 as differentiation proceeds further. These observations directly suggest that the alpha- and beta-globin genes are differentially expressed during cellular differentiation and raise questions as to how relative expression of globin genes is controlled during normal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号