首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.

Background  

In the mouse zygote the paternal genome undergoes dramatic structural and epigenetic changes. Chromosomes are decondensed, protamines replaced by histones and DNA is rapidly and actively demethylated. The epigenetic asymmetry between parental genomes remains at least until the 2-cell stage suggesting functional differences between paternal and maternal genomes during early cleavage stages.  相似文献   

4.
H3K36 methylation antagonizes PRC2-mediated H3K27 methylation   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
Wang W  Chen Z  Mao Z  Zhang H  Ding X  Chen S  Zhang X  Xu R  Zhu B 《EMBO reports》2011,12(11):1160-1166
The tandem Tudor-like domain-containing protein Spindlin1 has been reported to be a meiotic spindle-associated protein. Here we report that Spindlin1 is not associated with the spindle in mouse embryonic fibroblast cells during mitotic divisions. In interphase cells, Spindlin1 specifically localizes to the nucleoli. Moreover, Spindlin1 is a histone methylation effector protein that specifically recognizes H3K4 methylation. Finally, Spindlin1 localizes to the active ribosomal DNA (rDNA) repeats, and Spindlin1 facilitates the expression of rRNA genes.  相似文献   

7.
8.
9.
10.
Chromosomal surfaces are ornamented with a variety of post-translational modifications of histones, which are required for the regulation of many of the DNA-templated processes. Such histone modifications include acetylation, sumoylation, phosphorylation, ubiquitination, and methylation. Histone modifications can either function by disrupting chromosomal contacts or by regulating non-histone protein interactions with chromatin. In this review, recent findings will be discussed regarding the regulation of the implementation and physiological significance for one such histone modification, histone H3 lysine 4 (H3K4) methylation by the yeast COMPASS and mammalian COMPASS-like complexes.  相似文献   

11.
组蛋白H3K36位点可以发生甲基化修饰,其修饰状态受到H3K36甲基转移酶和去甲基化酶的动态调控。H3K36的甲基化修饰可引起多种生物学效应,如参与基因的转录激活或抑制、剂量补偿以及基因的选择性剪接等。H3K36甲基化修饰状态的异常与很多疾病相关,因此全面了解H3K36甲基化对于该类疾病的诊断和治疗具有重要意义。  相似文献   

12.
Li F  Huarte M  Zaratiegui M  Vaughn MW  Shi Y  Martienssen R  Cande WZ 《Cell》2008,135(2):272-283
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.  相似文献   

13.
14.
Mutual antagonism between DNA methylation and H3K27me3 histone methylation suggests a dynamic crosstalk between these epigenetic marks that could help ensure correct gene expression programmes. Work from Manzo et al ( 2017 ) now shows that an isoform of de novo DNA methyltransferase DNMT3A provides specificity in the system by depositing DNA methylation at adjacent “shores” of hypomethylated bivalent CpG islands (CGI) in mouse embryonic stem cells (mESCs). DNMT3A1‐directed methylation appears to be instructive in maintaining the H3K27me3 profile at the hypomethylated bivalent CGI promoters of developmentally important genes.  相似文献   

15.
16.
The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.  相似文献   

17.
18.
19.
20.
Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain–containing proteins, is expressed in embryonic and postnatal mammary progenitor cells. Pygo2 deficiency, which is achieved by complete or epithelia-specific gene ablation in mice, results in defective mammary morphogenesis and regeneration accompanied by severely compromised expansive self-renewal of epithelial progenitor cells. Pygo2 converges with Wnt/β-catenin signaling on progenitor cell regulation and cell cycle gene expression, and loss of epithelial Pygo2 completely rescues β-catenin–induced mammary outgrowth. We further describe a novel molecular function of Pygo2 that is required for mammary progenitor cell expansion, which is to facilitate K4 trimethylation of histone H3, both globally and at Wnt/β-catenin target loci, via direct binding to K4-methyl histone H3 and recruiting histone H3 K4 methyltransferase complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号