首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The bacteriophage T4 dda protein is a 5'-3' DNA helicase that stimulates DNA replication and recombination reactions in vitro and seems to play a role in the initiation of T4 DNA replication in vivo. Oligonucleotide probes based on NH2-terminal amino acid sequence were used to precisely map the location of the dda gene on the T4 chromosome. Using polymerase chain reaction techniques, the dda gene was then cloned into an expression vector, and the overproduced protein was purified in two chromatography steps. Both the genomic and cloned dda genes were sequenced and found to be identical, encoding a protein of 439 amino acids. The dda protein contains amino acid sequences resembling those of other known helicases, and is most homologous to the Escherichia coli recD protein. Protein affinity chromatography was used to show a direct interaction between the dda protein and the T4 uvsX protein (a rec A-type DNA recombinase).  相似文献   

3.
Protein B56.5 is a major Escherichia coli protein, originally identified on two-dimensional gels as an abundant cellular protein with unique regulation. The groE gene product is a bacterial protein essential for the assembly of many diverse bacteriophages. The ribosomal A-protein is a large, acidic protein of unknown function associated with isolated, washed ribosomes. On the basis of comigration in two-dimensional gels, oligopeptide map patterns, amino acid composition, immunological specificity, physical properties, and genetic analysis, protein B56.5 has now been shown to be the groE gene product and to be identical with the A-protein.  相似文献   

4.
A Cd-, Zn-, Cu-binding protein was isolated from the liver of dogfish subjected to environmental experimental contamination (50 ppm Cd). It was also found in liver from untreated fish. This protein has a high absorption at 250 nm and a low absorption at 280 nm, suggesting a mercaptide bond and a lack of aromatic amino acids. The SDS-PAGE pattern and changes in absorption spectrum on adding Cd or lowering pH are found as for mouse MT. The protein contains Cu and Zn in control and Cu, Zn and Cd in treated fish. Cd levels in the protein are significantly higher in females and significantly increase with treatment duration. Copper levels decrease after 96 hr in males and 6 days in females.  相似文献   

5.
Coronins constitute an evolutionary conserved family of WD-repeat actin-binding proteins. Their primary function is thought to be regulating the actin cytoskeleton. Apart from that, several coronins were indirectly shown to participate in vesicular transport, establishment of cell polarity and cytokinesis. Here, we report a novel mammalian protein, coronin 7 (crn7), which is significantly different from other mammalian coronins in its domain architecture. Crn7 possesses two stretches of WD repeats in contrast to the other coronins only having one. The protein is expressed throughout the mouse embryogenesis and is strongly upregulated in brain and developing structures of the immune system in the course of development. In adult animals, both crn7 mRNA and protein are abundantly present in most organs, with significantly higher amounts in brain, kidney, thymus and spleen and lower amounts in muscle. At the subcellular level, the bulk of the protein appears to be present in the cytosol and in large cytosolic complexes. However, a significant portion of the protein is detected on vesicle-like cytoplasmic structures as well as on the cis-Golgi. In the Golgi region, crn7 staining appears broader than that of the cis-Golgi markers Erd2p and beta-COP, still, the trans-Golgi network appears predominantly crn7-negative. Importantly, the membrane-associated form of crn7 protein is phosphorylated on tyrosine residues, whereas the cytosolic form is not. Crn7 is the first coronin protein proven to localize to the Golgi membrane. We conclude that it plays a role in the organization of intracellular membrane compartments and vesicular trafficking rather than in remodeling the cytoskeleton.  相似文献   

6.
The organic matrix in forming enamel consists largely of the amelogenin protein self-assembled into nanospheres that are necessary to guide the formation of the unusually long and highly ordered hydroxyapatite (HAP) crystallites that constitute enamel. Despite its ability to direct crystal growth, the interaction of the amelogenin protein with HAP is unknown. However, the demonstration of growth restricted to the c-axis suggests a specific protein-crystal interaction, and the charged COOH terminus is often implicated in this function. To elucidate whether the COOH terminus is important in the binding and orientation of amelogenin onto HAP, we have used solid state NMR to determine the orientation of the COOH terminus of an amelogenin splice variant, LRAP (leucine-rich amelogenin protein), which contains the charged COOH terminus of the full protein, on the HAP surface. These experiments demonstrate that the methyl 13C-labeled side chain of Ala46 is 8.0 A from the HAP surface under hydrated conditions, for the protein with and without phosphorylation. The experimental results provide direct evidence orienting the charged COOH-terminal region of the amelogenin protein on the HAP surface, optimized to exert control on developing enamel crystals.  相似文献   

7.
The epididymis of the ram synthesizes under androgenic control of specific 64 kD protein. The purified protein appeared as a single band in SDS polyacrylamide gel electrophoresis. It was labelled and an antiserum was prepared in mice. Results showed localization of receptors sites for 64 kD on the periacrosomal plasma membrane of testicular spermatozoa. The protein itself was found on the periacrosomal area of both epididymal and ejaculated spermatozoa.  相似文献   

8.
The adsorption (minor coat) protein of the bacteriophage fd has been implicated to function in several steps of viral morphogenesis. The protein has been purified by sodium dodecyl sulfate gel filtration after dissociation of the virus. The adsorption protein preparation was estimated to have less than 5% contamination by analysis on sodium dodecyl sulfate-polyacrylamide gels and by the results of semiquantitative dansyl-Edman degradation. The amino-terminal sequence of the adsorption protein is H2N-Ala-Glx-Thr-Val-Glx-Ser-Pro-Leu-Pro-. Carboxypeptidase A plus B digestion of the protein under a variety of denaturing conditions did not release any amino acids. There are 3-4 adsorption proteins per virion as estimated by the distribution of E114C]leucine between the major and minor coat protein peaks on sodium dodecyl sulfate-polyacrylamide gels. Adsorption protein-specific antibodies were induced in the rabbit and used as electronmicroscopic markers to determine the position of the adsorption proteins in the viral particle. The adsorption proteins were found at only one end of the filamentous viral particles.  相似文献   

9.
The complete sequence has been determined for the C1 subunit of crustacyanin, an astaxanthin-binding protein from the carapace of the lobster Homarus gammarus (L.). The polypeptide, 181 residues long, is similar (38% identity) to the other main subunit, A2 and to plasma retinol-binding protein. The tertiary structure of the C1 subunit has been modelled on that derived for the A2 subunit from the coordinates of retinol-binding protein. Residues lining the putative binding cavities and at the putative carotenoid binding sites of the two subunits are highly conserved. The carotenoid environments are characterized by a preponderance of aromatic and polar residues and the absence of charged side-chains. A tentative model for the dimer, beta-crustacyanin, formed between the two subunits with their associated carotenoid ligands, is discussed. The model is based on the crystal structure of the dimer of bilin-binding protein, a member of the same superfamily. This structure has enabled us to examine mechanisms for the bathochromic spectral shift of the protein-bound carotenoid and to identify likely contact regions between dimers in octameric alpha-crustacyanin.  相似文献   

10.
The PDZ domain gained its name from the three proteins that were first seen to have homology by virtue of these domains, the mammalian postsynaptic density protein, PSD-95, the Drosophila discs-large septate junction protein, DLG, and the mammalian epithelial tight-junction protein zona occludens, ZO-1. Over 50 PDZ domain-containing genes have been recognized so far from almost any organism subjected to sequencing, including mammals, nematodes, yeast, plants, and bacteria. The domain consists of an approximately 90-amino-acid-residue unit, which is often repeated in the protein. The majority of residues form a conserved spatial structure while a few amino acids in critical positions confer protein binding specificity. A subgroup of PDZ domains have been shown to recognize a short carboxy-terminal amino acid motif, T/SXV (Ser/Thr-X-Val-COO-), where X is any amino acid. We have identified and completely sequenced a gene, Mpdz, that encodes a mouse protein containing 13 such domains. We have also mapped the gene to a series of overlapping deletions on mouse chromosome 4 and can therefore determine that its function is not essential for embryonic development or neonatal survival.  相似文献   

11.
应用分子生物学技术,选择鹦鹉热嗜衣原体(Chlamydophila psittaci,C.psittaci,Cps)6BC株的CPAF蛋白的免疫优势区基因,进行构建pGEX6p-2/CPAFm重组质粒与重组菌,使用IPTG诱导重组蛋白的表达并分析诱导温度、诱导剂剂量及诱导时间对蛋白表达的影响.重组蛋白以GST琼脂糖凝胶...  相似文献   

12.
The COVID‐19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS‐CoV‐2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS‐CoV‐2 E protein and by comparing it with the SARS‐CoV E protein. The E protein amino acid sequence, structure, self‐assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS‐CoV‐2 and SARS‐CoV E proteins are similar in many respects, specific studies on the SARS‐CoV‐2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.  相似文献   

13.
A protein corresponding to the N-terminal domain of rubrerythrin was isolated from a strictly aerobic archaeon, Sulfolobus tokodaii strain 7. The molecular mass was found to be 15.8 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, 16278 Da by time-of-flight mass spectrometry and 34.5 kDa by gel filtration chromatography, suggesting that the protein is dimeric. Two mol iron and 1-2 mol zinc mol(-1) protein were detected. On addition of the azide ion, the absorption spectrum was greatly affected. The far UV circular dichroism spectrum suggested that the protein was mostly composed of alpha-helices. The N-terminal sequence completely matched the open reading frame, st2370, recently found on genome analysis of the organism. The protein was homologous to rubrerythrin but lacked a C-terminal rubredoxin domain. It was found in the genus Sulfolobus and therefore named sulerythrin; it is the smallest and first aerobic member of the rubrerythrin family.  相似文献   

14.
The Na+/H+ exchanger is a pH regulatory protein that is responsible for removal of excess intracellular protons in exchange for extracellular Na+. It is a plasma membrane protein with a large cytoplasmic carboxyl terminal domain that regulates activity of the membrane domain. We overexpressed and purified the cytoplasmic domain that was produced in Escherichia coli. This region (516-815 amino acids) was under control of the tac promoter from the plasmid pGEX-KG and was fused with glutathione S-transferase. Upon induction, the fusion protein was principally found in inclusion bodies. Purified inclusion bodies were solubilized and fractionated using preparative SDS polyacrylamide gel electrophoresis. To obtain free Na+/H+ exchanger protein the fusion protein was dialyzed against cleavage buffer and cleaved at the thrombin cleavage site between glutathione S-transferase and the Na+/H+ exchanger domain. Free Na+/H+ exchanger protein was obtained by rerunning the sample on preparative gel electrophoresis. The final yield of the purified protein was 2.15 mg protein/L of cell culture. After exhaustive dialysis the secondary structure of the purified protein was assessed using circular dichroism spectroscopy. The results indicated that the protein was 35% alpha-helix, 17% beta-turn, and 48% random coil. They suggest that the cytoplasmic domain is structured and some regions may be compact in nature.  相似文献   

15.
Recently, the amino acid sequence of a 12 Kd endogenous protein inhibitor of protein kinase C (PKC-I 2) has been shown to be identical to that of the 12 KDa receptor for the immunosuppressive drug, FK-506. In view of this observation we examined the effects of recombinant and native human FKBP on protein kinase C (PKC) activity. FKBP, at molar concentrations up to 1900-fold over that of PKC, failed to inhibit PKC phosphorylation of histone H1 and failed to block the auto-phosphorylation of PKC. Interestingly, FKBP is phosphorylated by PKC in these reactions. The phosphorylation of FKBP by PKC appears to be specific since the catalytic subunit of cAMP-dependent protein kinase fails to phosphorylate the binding protein. Our results fail to support a role for FKBP as an inhibitor of protein kinase C.  相似文献   

16.
Protein aggregation seems to be a common feature of several neurodegenerative diseases and to some extent of physiological aging. It is not always clear why protein aggregation takes place, but a disturbance in the homeostasis between protein synthesis and protein degradation seems to be important. The result is the accumulation of modified proteins, which tend to form high molecular weight aggregates. Such aggregates are also called inclusion bodies, plaques, lipofuscin, ceroid, or ‘aggresomes’ depending on their location and composition. Such aggregates are not inert metabolic end products, but actively influence the metabolism of cells, in particular proteasomal activity and protein turnover. In this review we focus on the influence of oxidative stress on protein turnover, protein aggregate formation and the various interactions of protein aggregates with the proteasome. Furthermore, the formation and effects of protein aggregates during aging and neurodegeneration will be highlighted.  相似文献   

17.

Background

The sizes of proteins are relevant to their biochemical structure and for their biological function. The statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of proteomes.

Results

Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of proteins can be roughly described with a gamma type or log-normal model, depending on the species. However the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between 1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only ~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa) and archaeal (283 aa) proteins are significantly smaller (33-40% on average). Average protein sizes in different phylogenetic groups were: Alveolata (628 aa), Amoebozoa (533 aa), Fornicata (543 aa), Placozoa (453 aa), Eumetazoa (486 aa), Fungi (487 aa), Stramenopila (486 aa), Viridiplantae (392 aa). Amino acid composition is biased according to protein size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes.

Conclusions

Mathematical modeling of protein length empirical distributions can be used to asses the quality of small ORFs annotation in genomic releases (detection of too many false positive small ORFs). There is a negative correlation between average protein size and total number of proteins among eukaryotes but not in prokaryotes. The %GC content is positively correlated to total protein number and protein size in prokaryotes but not in eukaryotes. Small proteins have a different amino acid bias than larger proteins. Compared to prokaryotic species, the evolution of eukaryotic proteomes was characterized by increased protein number (massive gene duplication) and substantial changes of protein size (domain addition/subtraction).  相似文献   

18.
Paper states standard and microdetermination of protein that is not affected by the presence of various substances including buffers, sucrose, ATP, eluates from columns of polysaccharide derivatives, etc. The method was originally based on Kihara's method (4), although the basic principle is somewhat different.The protein was stained with amido black under defined condition, filtered, and washed through a small membrane filter, and the filter was extracted with SDS-methanol. The color intensity was measured. The recovery of proteins was almost 100%. From 2 to 100 μg of protein could be successfully determined on a standard scale and from 1 to 20 μg on a microscale.  相似文献   

19.
In order to successfully respond to stress all cells rely on the ability of the proteasomal and lysosomal proteolytic pathways to continually maintain protein turnover. Increasing evidence suggests that as part of normal aging there are age-related impairments in protein turnover by the proteasomal proteolytic pathway, and perturbations of the lysosomal proteolytic pathway. Furthermore, with numerous studies suggest an elevated level of a specialized form of lysosomal proteolysis (autophagy or macroautophagy) occurs during the aging of multiple cell types. Age-related alterations in proteolysis are believed to contribute to a wide variety of neuropathological manifestations including elevations in protein oxidation, protein aggregation, and cytotoxicity. Within the brain altered protein turnover is believed to contribute to elevations in multiple forms of protein aggregation ranging from tangle and Lewy body formation, to lipofuscin-ceroid accumulation. In this review we discuss and summarize evidence for proteolytic alterations occurring in the aging brain, the contribution of oxidative stress to disruption of protein turnover during normal aging, the evidence for cross-talk between the proteasome and lysosomal proteolytic pathways in the brain, and explore the contribution of altered proteolysis as a mediator of oxidative stress, neuropathology, and neurotoxicity in the aging brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号