首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract We report the first demonstration of nonionic detergent micelle conjugation and phase separation using purpose‐synthesized, peptide amphiphiles, C10‐(Asp)5 and C10‐(Lys)5. Clustering is achieved in two different ways. Micelles containing the negatively charged peptide amphiphile C10‐(Asp)5 are conjugated (a) via a water‐soluble, penta‐Lys mediator or (b) to micelles containing the C10‐(Lys)5 peptide amphiphile. Both routes lead to phase separation in the form of oil‐rich globules visible in the light microscope. The hydrophobic nature of these regions leads to spontaneous partitioning of hydrophobic dyes into globules that were found to be stable for weeks to months. Extension of the conjugation mechanism to micelles containing a recently discovered, light‐driven proton pump King Sejong 1‐2 (KS1‐2) demonstrates that a membrane protein may be concentrated using peptide amphiphiles while preserving its native conformation as determined by characteristic UV absorption. The potential utility of these peptide amphiphiles for biophysical and biomedical applications is discussed.  相似文献   

2.
脂质体作为一种药物载体广泛应用于肿瘤药物输送中。配体修饰的靶向脂质体,其靶向配体分子在脂质体表面修饰的构象和密度等参数,对脂质体本身的特性及其体内的靶向效果,有很大的影响。但有关其中的具体相互关系,以及可能的最优条件,国内外文献都尚无定论。据此我们建立了多肽靶向脂质体表面配体修饰的分析方法,并通过影像学手段来研究不同靶向肽含量对脂质体在荷瘤裸鼠中的靶向行为的影响。首先采用孵育插入法将带有多肽的脂质分子插入脂质体表面,用分子筛色谱法分离修饰后的脂质体和未插入的多肽脂质,再用HPLC-ELSD定量各脂质成分,得到多肽靶向脂质体表面的靶向肽密度。而后将修饰有不同密度靶向多肽的荧光脂质体经荷瘤小鼠尾静脉注射,分别在给药前后各时间点对小鼠进行扫描,对扫描得到的图像进行处理并计算AUC、T1/2和MRT等相关药代动力学参数。结果表明,随着脂质体表面多肽密度的增加,即多肽密度大于1.298%的靶向脂质体,其肿瘤部位的荧光AUC、T1/2和MRT都较未修饰的隐形脂质体有所提高,显示其在肿瘤组织中的聚集量增多、停留时间延长,针对肿瘤细胞的特异性作用机制得以彰显。  相似文献   

3.
透明质酸(hyaluronic acid,HA)是脊椎动物细胞间基质的重要组成成分,它是一种线性生物多聚糖,具有良好的生物相容性、生物可降解、无毒、无免疫原性等特点,在生物医药领域有广泛的应用。本文简要介绍透明质酸的结构特点及其靶向作用机制,综述近年来透明质酸作为药物载体和靶向因子在肿瘤治疗中的研究现状。  相似文献   

4.
载药脂质体的研究与应用进展   总被引:1,自引:1,他引:1  
载药脂质体给药系统已成为国内外的研究热点。传统脂质体经修饰和改良后表现出良好的生物相容性,缓释性和靶向性。新型脂质体在经皮给药,肺部给药,脑部靶向治疗,基因治疗等方面的应用研究结果显示,集药物缓释、靶向于一体的具有良好生物安全性的脂质体给药系统具有很大发展潜力。本文综述了该领域中的最新研究进展。  相似文献   

5.
6.
Chen T  Embree HD  Wu LQ  Payne GF 《Biopolymers》2002,64(6):292-302
The enzyme tyrosinase was used for the in vitro conjugation of the protein gelatin to the polysaccharide chitosan. Tyrosinases are oxidative enzymes that convert accessible tyrosine residues of proteins into reactive o-quinone moieties. Spectrophotometric and dissolved oxygen studies indicate that tyrosinase can oxidize gelatin and we estimate that 1 in 5 gelatin chains undergo reaction. Oxidized tyrosyl residues (i.e., quinone residues) can undergo nonenzymatic reactions with available nucleophiles such as the nucleophilic amino groups of chitosan. Ultraviolet/visible, (1)H-NMR, and ir provided chemical evidence for the conjugation of oxidized gelatin with chitosan. Physical evidence for conjugation was provided by dynamic viscometry, which indicated that tyrosinase catalyzes the sol-to-gel conversion of gelatin/chitosan mixtures. The gels formed from tyrosinase-catalyzed reactions were observed to differ from gels formed by cooling gelatin. In contrast to gelatin gels, tyrosinase-generated gels had different thermal behavior and were broken by the chitosan-hydrolyzing enzyme chitosanase. These results demonstrate that tyrosinase can be exploited for the in vitro formation of protein-polysaccharide conjugates that offer interesting mechanical properties.  相似文献   

7.
The objective of this study was to develop an efficient tumor vasculature targeted liposome delivery system for combretastatin A4, a novel antivascular agent. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, distearoyl phosphoethanolamine-polyethylene-glycol-2000 conjugate (DSPE-PEG), and DSPE-PEG-maleimide were prepared by the lipid film hydration and extrusion process. Cyclic RGD (Arg-Gly-Asp) peptides with affinity for αvβ3-integrins expressed on tumor vascular endothelial cells were coupled to the distal end of PEG on the liposomes sterically stabilized with PEG (long circulating liposomes, LCL). The liposome delivery system was characterized in terms of size, lamellarity, ligand density, drug loading, and leakage properties. Targeting nature of the delivery system was evaluated in vitro using cultured human umbilical vein endothelial cells (HUVEC). Electron microscopic observations of the formulations revealed presence of small unilamellar liposomes of ∼120 nm in diameter. High performance liquid chromatography determination of ligand coupling to the liposome surface indicated that more than 99% of the RGD peptides were reacted with maleimide groups on the liposome surface. Up to 3 mg/mL of stable liposomal combretastatin A4 loading was achieved with ∼80% of this being entrapped within the liposomes. In the in vitro cell culture studies, targeted liposomes showed significantly higher binding to their target cells than non-targeted liposomes, presumably through specific interaction of the RGD with its receptors on the cell surface. It was concluded that the targeting properties of the prepared delivery system would potentially improve the therapeutic benefits of combretastatin A4 compared with nontargeted liposomes or solution dosage forms.  相似文献   

8.
The presence of poly(ethylene glycol) (PEG) at the surface of a liposomal carrier has been clearly shown to extend the circulation lifetime of the vehicle. To this point, the extended circulation lifetime that the polymer affords has been attributed to the reduction or prevention of protein adsorption. However, there is little evidence that the presence of PEG at the surface of a vehicle actually reduces total serum protein binding. In this review we examine all aspects of PEG in order to gain a better understanding of how the polymer fulfills its biological role. The physical and chemical properties of the polymer are explored and compared to properties of other hydrophilic polymers. An evidence based assessment of several in vitro protein binding studies as well as in vivo pharmacokinetics studies involving PEG is included. The ability of PEG to prevent the self-aggregation of liposomes is considered as a possible means by which it extends circulation longevity. Also, a dysopsonization phenomenon where PEG actually promotes binding of certain proteins that then mask the vehicle is discussed.  相似文献   

9.
Routine direct assessment of immunoglobulin (Ig)-liposome(lp) conjugation efficiency has been impeded by phospholipid interference with standard protein and immunoassay methods. Rabbit IgG conjugated to anionic liposomes was quantitated in immunoblots using computer image analysis techniques. Lp-coupled Ig was separated from free Ig by dialysis in disposable Spectra/Por units (MWCO 300 kDa). Differential Lowry protein assay (DLA) of the thiolated Ig reactant and the dialyzate provided an estimate of conjugation efficiency that was compared to the results of the immunoblot assay (IBA). The color response of Ig-lp in the IBA was about an order of magnitude greater than rabbit IgG alone, requiring the synthesis of an Ig-lp standard in which the Ig conjugation efficiency was assessed by radiotracer methodology. The use of the same standard in three colorimetric protein assays verified the accuracy of the IBA and demonstrated that the colorimetric assays could be employed to determine Ig-lp conjugation efficiency. In terms of sensitivity and specificity, however, the IBA is better suited for routine assessment of laboratory-scale Ig-lp conjugation efficiencies. The DLA was found to be an unsatisfactory measure of conjugation efficiencies because an interfering substance was apparently released by Ig-lp preparations.  相似文献   

10.
Chemical modification of proteins has been crucial in engineering protein‐based therapies, targeted biopharmaceutics, molecular probes, and biomaterials. Here, we explore the use of a conjugation‐based approach to sense alternative conformational states in proteins. Tyrosine has both hydrophobic and hydrophilic qualities, thus allowing it to be positioned at protein surfaces, or binding interfaces, or to be buried within a protein. Tyrosine can be conjugated with 4‐phenyl‐3H‐1,2,4‐triazole‐3,5(4H)‐dione (PTAD). We hypothesized that individual protein conformations could be distinguished by labeling tyrosine residues in the protein with PTAD. We conjugated tyrosine residues in a well‐folded protein, bovine serum albumin (BSA), and quantified labeled tyrosine with liquid chromatography with tandem mass spectrometry. We applied this approach to alternative conformations of BSA produced in the presence of urea. The amount of PTAD labeling was found to relate to the depth of each tyrosine relative to the protein surface. This study demonstrates a new use of tyrosine conjugation using PTAD as an analytic tool able to distinguish the conformational states of a protein.  相似文献   

11.
This study reports a physicochemical stability evaluation of a previously reported liposomal prilocaine (PLCLUV) formulation () before and after steam sterilization as well as its local toxicity evaluation. Prilocaine (PLC) was encapsulated into extruded unilamellar liposomes (LUVs) composed by egg phosphatidylcholine:cholesterol:alfa-tocopherol (4:3:0.07, mole?%). Laser light-scattering analysis (p?>?0.05) and thiobarbituric acid reaction (p?>?0.05) were used to evaluate the liposomes physical (size) and chemical (oxidation) stability, respectively. The prilocaine chemical stability was followed by 1H-nuclear magnetic resonance. These tests detected no differences on the physicochemical stability of PLC or PLCLUV, sterilized or not, up to 30 days after preparation (p?>?0.05). Finally, the paw edema test and histological analysis of rat oral mucosa were used to assess the possible inflammatory effects of PLCLUV. PLCLUV did not evoke rat paw edema (p?>?0.05), and no significant differences were found in histological analysis, when compared to the control groups (p?>?0.05). The present work shows that PLCLUV is stable for a 30-day period and did not induce significant inflammatory effects both in the paw edema test and in histological analysis, giving supporting evidence for its safety and possible clinical use in dentistry.  相似文献   

12.
Biophysical aspects of using liposomes as delivery vehicles   总被引:5,自引:0,他引:5  
Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.  相似文献   

13.
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.  相似文献   

14.
Abstract

Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.  相似文献   

15.
The purpose of this review is to discuss the impact of nanocarriers administered by pulmonary route to treat and to diagnose respiratory and non respiratory diseases. Indeed, during the past 10 years, the removal of chlorofluorocarbon propellants from industrial and household products intended for the pulmonary route has lead to the developments of new alternative products. Amongst these ones, on one hand, a lot of attention has been focused to improve the bioavailability of marketed drugs intended for respiratory diseases and to develop new concepts for pulmonary administration of drugs and, on the other hand, to use the pulmonary route to administer drugs for systemic diseases. This has led to some marketed products through the last decade. Although the introduction of nanotechnology permitted to step over numerous problems and to improve the bioavailability of drugs, there are, however, unresolved delivery problems to be still addressed. These scientific and industrial innovations and challenges are discussed along this review together with an analysis of the current situation concerning the industrial developments.  相似文献   

16.
Applications of microbial transglutaminase (mTGase) produced from Streptomyces mobarensis (S. mobarensis) were recently extended from food to pharmaceutical industry. To use mTGase for clinical applications, like generation of site specific antibody drug conjugates, it would be beneficial to manufacture mTGase in Escherichia coli (E. coli). To date, attempts to express recombinant soluble and active S. mobarensis mTGase have been largely unsuccessful. mTGase from S. mobarensis is naturally expressed as proenzyme and stepwise proteolytically processed into its active mature form outside of the bacterial cell. The pro‐domain is essential for correct folding of mTGase as well as for inhibiting activity of mTGase inside the cell. Here, we report a genetically modified mTGase that has full activity and can be expressed at high yields in the cytoplasm of E. coli. To achieve this we performed an alanine‐scan of the mTGase pro‐domain and identified mutants that maintain its chaperone function but destabilize the cleaved pro‐domain/mTGase interaction in a temperature dependent fashion. This allows proper folding of mTGase and keeps the enzyme inactive during expression at 20°C, but results in full activity when shifted to 37°C due to loosen domain interactions. The insertion of the 3C protease cleavage site together with pro‐domain alanine mutants Tyr14, Ile24, or Asn25 facilitate high yields (30–75 mg/L), and produced an enzyme with activity identical to wild type mTGase from S. mobarensis. Site‐specific antibody drug conjugates made with the E .coli produced mTGase demonstrated identical potency in an in vitro cell assay to those made with mTGase from S. mobarensis.  相似文献   

17.
Three methods for the conjugation of oligonucleotides to antibodies and the subsequent application of these conjugates to protein detection at attomole levels in immunoassays are described. The methods are based on chemical modification of both antibody and oligonucleotide. Aldehydes were introduced onto antibodies by modification of primary amines or oxidation of carbohydrate residues. Aldehyde- or hydrazine-modified oligonucleotides were prepared either during phosphoramidite synthesis or by post-synthesis derivatization. Conjugation between the modified oligonucleotide and antibody resulted in the formation of a hydrazone bond that proved to be stable over long periods of time under physiological conditions. The binding activity of each antibody-oligonucleotide conjugate was determined to be comparable to the corresponding unmodified antibody using a standard sandwich ELISA. Each oligonucleotide contained a unique DNA sequence flanked by universal primers at both ends and was assigned to a specific antibody. Highly sensitive immunoassays were performed by immobilizing analyte for each conjugate onto a solid support with cognate capture antibodies. Binding of the antibody-oligonucleotide conjugate to the immobilized analyte allowed for amplification of the attached DNA. Products of amplification were visualized using gel electrophoresis, thus denoting the presence of bound analyte. The preferred conjugation method was used to generate a set of antibody-oligonucleotide conjugates suitable for high-sensitivity protein detection.  相似文献   

18.
近年来,癌症的发病率和死亡率不断上升,对人类健康造成极大的威胁。阿霉素作为一种广谱抗肿瘤药物,对正常细胞亦有严重毒副作用,从而使其临床应用受到限制。提高阿霉素肿瘤靶向性、降低其毒性由此成为该药物的热点研究方向。对阿霉素靶向给药系统的研究进展进行了综述。  相似文献   

19.
Geng J  Klionsky DJ 《EMBO reports》2008,9(9):859-864
As a lysosomal/vacuolar degradative pathway that is conserved in eukaryotic organisms, autophagy mediates the turnover of long-lived proteins and excess or aberrant organelles. The main characteristic of autophagy is the formation of a double-membrane vesicle, the autophagosome, which envelops part of the cytoplasm and delivers it to the lysosome/vacuole for breakdown and eventual recycling of the degradation products. Among the approximately 30 autophagy-related (Atg) genes identified so far, there are two ubiquitin-like proteins, Atg12 and Atg8. Analogous to ubiquitination, Atg12 is conjugated to Atg5 by Atg7--an E1-like protein--and Atg10--an E2-like protein. Similarly, Atg7 and Atg3 are the respective E1-like and E2-like proteins that mediate the conjugation of Atg8 to phosphatidylethanolamine. Both Atg12-Atg5 and Atg8 localize to the developing autophagosome. The Atg12-Atg5 conjugate facilitates the lipidation of Atg8 and directs its correct subcellular localization. Atg8-phosphatidylethanolamine is probably a scaffold protein that supports membrane expansion and the amount present correlates with the size of autophagosomes.  相似文献   

20.
Dendritic cells (DCs) are considered the most efficient antigen-presenting cells and are therefore ideal targets for in vivo delivery of antigen for vaccines. We are investigating the strategy of using CD40 ligand (CD40L) as a targeting moiety because this protein has the potential to not only target DCs, but also stimulate cell maturation, leading to more potent immune responses. We have shown that a recombinant, monomeric CD40 ligand fusion protein conjugated to polystyrene micro- and nanoparticles led to significantly enhanced uptake by DCs in vitro. This enhancement was observed for particles of both sizes and in both a murine DC cell line and primary DCs. The uptake appeared to be specifically mediated by CD40L binding to CD40 expressed on DCs. Enhanced uptake of nanoparticles in draining lymph nodes of mice was not observed, however, 48 hours after subcutaneous injection. These findings suggest that CD40 ligand may be a potentially useful targeting moiety for delivery of particulate vaccines to DCs, and that further optimization of both CD40L and the polymer carriers is necessary to achieve efficacy in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号