首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moss CX  Tree TI  Watts C 《The EMBO journal》2007,26(8):2137-2147
Endocytosed antigens are proteolytically processed and small amounts of peptides captured by class II MHC molecules. The details of antigen proteolysis, peptide capture and how destruction of T-cell epitopes is avoided are incompletely understood. Using the tetanus toxin antigen, we show that the introduction of 3-6 cleavage sites is sufficient to trigger a partially unfolded conformation able to bind to class II MHC molecules. The known locations of T-cell epitopes and protease cleavage sites predict that large domains of processed antigen (8-35 kDa) are captured under these conditions. Remarkably, when antigen is bound to the B-cell antigen receptor (BCR), processing can trigger a concerted 'hand-over' reaction whereby BCR-associated processed antigen is captured by neighbouring class II MHC molecules. Early capture of minimally processed antigen and confinement of the processing and class II MHC loading reaction to the membrane plane may improve the likelihood of T-cell epitope survival in the class II MHC pathway and may help explain the reciprocal relationships observed between B- and T-cell epitopes in many protein antigens and autoantigens.  相似文献   

2.
We consider the way in which antigen is presented to T cells on MHC molecules and ask how MHC peptide presentation could be optimized so as to obtain an effective and safe immune response. By analysing this problem with a mathematical model of T-cell activation, we deduce the need for both MHC restriction and high presentation selectivity. We find that the optimal selectivity is such that about one pathogen-derived peptide is presented per MHC isoform, on the average. We also indicate upper and lower bounds to the number of MHC isoforms per individual based on detectability requirements. Thus we deduce that an important role of MHC presentation is to act as a filter that limits the diversity of antigen presentation.  相似文献   

3.
Murine T-cell clones specific for chicken erythrocyte alloantigens   总被引:8,自引:0,他引:8  
We have established murine T-cell clones which respond to allotypic and species-specific determinants found on chicken erythrocytes (cRBC). Their relative antigen specificities were determined by assessing lymphokine production and proliferation in response to syngeneic spleen cells and cRBC obtained from chickens homozygous for major histocompatibility complex (MHC) antigens. The specificity pattern suggested that the T-cell clones recognized a more restricted set of cRBC MHC-associated allodeterminants than do antibody-producing cells. The antigen-specific responses required antigen processing, and were MHC restricted and antigen dose dependent. Approximately 20% of T-cell clones from appropriate strains of mice were also Mls alloreactive. This second reactivity showed no correlation with nominal cRBC specificity. The induction-specific lymphokine activities of T-cell growth factor, mast cell growth factor, and Ia induction factor were identified as interleukin 2 (IL-2), interleukin 3 (IL-3), and interferon-gamma respectively.  相似文献   

4.
We have isolated a Thy-1+, CD3+, CD4+ T-cell line from the spleen of a 12-week-old nu/nu (nude) BALB/c mouse. The cell line is clonal, and it expresses an alpha beta T-cell antigen receptor. Upon activation, these cells secrete IL-2 but not IL-4, putting them in the Th1 category. The cells can be triggered to proliferate and secrete lymphokines in the presence of irradiated syngeneic or allogeneic splenic feeder cells that express a variety of MHC haplotypes. This response is MHC class II-specific, because it can be blocked by either anti-Ia or anti-CD4 antibodies. From the response pattern of this T-cell line, we conclude that it recognizes a common determinant on class II MHC antigens. This nude mouse T-lymphocyte presumably has not undergone thymic selection. Therefore its unique specificity may reflect both the bias of T-cell antigen receptor genes for encoding receptors that recognize MHC molecules and the requirement for functional thymic epithelial cells for the efficient education of a self-MHC-restricted repertoire.  相似文献   

5.
The large cells from Mycobacterium leprae-induced granulomas in guinea pig lymph nodes were separated by Percoll discontinuous density gradient centrifugation and on a fluorescence-activated cell sorter (FACS) using cross-reacting monoclonal antibody to human MHC Class II antigens. Large Percoll-separated cells (83% Class II antigen positive and 52% macrophage-specific antigen positive) and FACS-separated cells are able to act as antigen-presenting cells for T-cell proliferation to PPD. In previous studies, macrophage antigen-positive cells consistently failed to act as accessory cells. This indicates that there is a population of accessory cells which are macrophage antigen negative and MHC Class II antigen positive present in these M. leprae-induced granulomas.  相似文献   

6.
The major histocompatibility complex (MHC)-restricted selection of T-cell epitopes of foot-and-mouth disease virus (FMDV) by individual cattle MHC class II DR (BoLA-DR) molecules was studied in a direct MHC-peptide binding assay. By in vitro priming of T lymphocytes derived from animals homozygous for both MHC class I and II, five T-cell epitopes were analyzed in the context of three MHC class II haplotypes. We found that the presentation of these T-cell epitopes was mediated by DR molecules, since blocking this pathway of antigen presentation using monoclonal antibody TH14B completely abolished the proliferative responses against the peptides. To study the DR-restricted presentation of these T-cell epitopes, a direct MHC-peptide binding assay on isolated cattle DR molecules was developed. Purified cattle MHC class II DR molecules of the BoLA-DRB3*0201, BoLA-DRB3*1101, and BoLA-DRB3*1201 alleles were isolated from peripheral blood mononuclear cells. For each allele, one of the identified T-cell epitopes was biotinylated, and used as a marker peptide for the development of a competitive MHC-peptide binding assay. Subsequently, the T-cell epitopes of FMDV with functionally defined MHC class II specificity were analyzed in this binding assay. The affinity of the epitopes to bind to certain DR molecules was significantly correlated to the capacity to induce T-cell proliferation. This demonstrated at the molecular level that the selection of individual T-cell epitopes found at the functional level was indeed the result of MHC restriction.  相似文献   

7.
A pivotal step in the initiation of T-cell immunity is the presentation of antigenic peptides by major histocompatibility complex (MHC) expressed on antigen presenting cells. The expression of MHC class II molecules by mouse T-cells has not been shown unequivocally. In the present work, we demonstrate that activated mouse T-cells synthesize MHC class II molecules de novo and express them on their surface. Further, we have demonstrated that in vitro activated T-cells take up extra-cellular soluble nucleocapsid protein of a morbillivirus. The internalized antigen goes to antigen processing compartment as shown by co-localization of antigen and LAMP-1 using confocal microscopy. We show that activated T-cells express H2M, a chaperone molecule known to have a role in antigen presentation. Further, we demonstrate that activated T-cells process and present internalized extra-cellular antigen to primed T-cells as shown by IL-2 secretion and in vitro proliferation. The presentation of antigen by T-cells may have implications in immuno-regulation, control of infection by lymphotropic viruses and maintenance of immunological memory.  相似文献   

8.
Engagement of antigen receptors on the surface of T-cells with peptides bound to major histocompatibility complex (MHC) proteins triggers T-cell activation in a mechanism involving receptor oligomerization. Receptor dimerization by soluble MHC oligomers is sufficient to induce several characteristic activation processes in T-cells including internalization of engaged receptors and up-regulation of cell surface proteins. In this work, the influence of intermolecular orientation within the activating receptor dimer was studied. Dimers of class II MHC proteins coupled in a variety of orientations and topologies each were able to activate CD4+ T-cells, indicating that triggering was not dependent on a particular receptor orientation. In contrast to the minimal influence of receptor orientation, T-cell triggering was affected by the inter-molecular distance between MHC molecules, and MHC dimers coupled through shorter cross-linkers were consistently more potent than those coupled through longer cross-linkers. These results are consistent with a mechanism in which intermolecular receptor proximity, but not intermolecular orientation, is the key determinant for antigen-induced CD4+ T-cell activation.  相似文献   

9.
Kupffer cells (KC) act as APC in the liver and play a major role in the clearance of gut-derived antigens and pathogens entering the liver with portal venous blood. Antigen presentation by KC has been implicated in regulation of the local and systemic immune responses. In this study, modulation of KC antigen presentation by antioxidants and the role of reactive oxygen species (ROS) as essential mediators of antigen presentation in KC were investigated. Co-culture of KC with ovalbumin (OVA) antigens resulted in upstream intracellular endogenous ROS generation and increased expression of MHC class II and costimulator molecules, and consequent OVA-specific CD4(+) T-cell proliferation in response to antigen presentation by KC. Scavenging of KC ROS by antioxidants, or blocking of KC ROS generation by specific inhibitors of NADPH oxidase and/or xanthine oxidase, or by specific inhibitors of the mitochondrial electron transport chain, significantly decreased OVA-specific T-cell proliferation in response to antigen presentation by KC. Increased expression of MHC class II and costimulatory molecules in KC pulsed with OVA antigens was blocked by inhibiting ROS generation enzymatically. Intracellular endogenous ROS generation during antigen processing may therefore provide essential secondary signalling for KC antigen presentation.  相似文献   

10.
Chang KY  Suri A  Unanue ER 《Proteomics》2007,7(3):367-377
The useful structural features of class II MHC molecules are rarely integrated into T-cell epitope predictions. We propose an approach that applies a novel expectation-maximization algorithm to align the naturally processed peptides selected by the class II MHC I-A(g7) molecule - focusing on the five MHC-specific anchor positions. Based on the alignment profile, log of odds (LOD) scores supplemented with the Laplace plus-one pseudocounts method are applied to identify the potential T-cell epitopes. In addition, an innovative computational concept of hindering residues using statistical and structural information is developed to refine the prediction. Performance analysis by receiver operating characteristics statistics and the experimental validation of the LOD scores demonstrate the accuracy of our predictive model. Furthermore, our model successfully predicts T-cell epitopes of hen egg-white lysozyme protein antigen. Our study provides a framework for predicting T-cell epitopes in class II MHC molecules.  相似文献   

11.
To identify the cellular receptors and other cell surface molecules playing essential roles in the transmission of human T-cell leukemia virus type 1 (HTLV-1), we have been isolating monoclonal antibodies (mAbs) that are capable of inhibiting HTLV-1-induced syncytium formation. In the present study, we isolated two mAbs, H11 (IgM) and H14 (IgG1), inhibitory to syncytium formation in the coculture of TOM-1 or C91/PL (both HTLV-1-positive human T-cell lines) and MOLT-4/8 (HTLV-1-negative human T-cell line) by immunizing the membrane fraction of human osteosarcoma line HOS. By immunoprecipitation and immunoblotting, H11 and H14 were found to be specific for MHC class I heavy chain and beta 2-microglobulin (beta 2 M), respectively. Among the four commercially obtained mAbs, two mAbs for MHC class I antigen and two mAbs to beta 2 M, one mAb to MHC class I antigen and one mAb to beta 2 M were also found to be inhibitory to the syncytium formation. The functional comparison of these mAbs revealed that the syncytium-inhibitory mAbs induced strong homotypic cell adhesion particularly in the HTLV-1-positive T-cell lines. This cell adhesion was dependent on temperature, energy metabolism, and microfilament function but not on the activity of protein kinase C or divalent cations. These results suggest a novel type of LFA-1-independent cell adhesion induced by signal transduction via MHC class I antigen.  相似文献   

12.
MHC class II invariant chains in antigen processing and presentation   总被引:1,自引:0,他引:1  
Most protein antigens cannot elicit a T-cell response unless they are processed to peptides, which are then presented to T lymphocytes by surface MHC class II molecules. Recent evidence supports an essential role of the invariant chain associated with class II MHC polypeptides in antigen processing.  相似文献   

13.
Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions that allows a few MHC molecules to serve as restriction elements for a large universe of antigens; and (2) what is the relative contribution of determinant selection (i.e. antigen-MHC complex formation) and T-cell repertoire in determining the capacity of an individual to respond to an antigen? By analysing single amino acid substitution analogues of a peptide antigen (Ova 325-335) as well as by analysing the structural similarities between unrelated peptides capable of binding to the same MHC molecule, we have been able to document the very permissive nature of the antigen-MHC interaction. Despite this permissiveness of binding, it is possible to define certain structural features of peptides that are associated with the capacity to bind to a particular MHC specificity. With respect to the question of the relative role of 'determinant selection' and 'holes in the T-cell repertoire' in determining immune responsiveness, we present data that suggest both mechanisms operate in concert with one another. Thus only about 30% of a collection of peptides that in sum represent the sequence of a protein molecule were found to bind to Ia. Although immunogenicity was restricted to those peptides that were capable of binding to Ia (i.e. determinant selection was operative), we found that about 40% of Ia-binding peptides were not immunogenic (i.e. there were also 'holes in the T-cell repertoire').  相似文献   

14.
Class I and class II major histocompatibility complex (MHC) antigens are required for CD8+ cytotoxic T cells and CD4+ helper T-cells, respectively, to recognize foreign antigen. Regulating the levels of expression of these MHC antigens regulates the T-cell responses [1]. This regulation is mainly carried out by the interferons (IFN), which are produced in the disease state. Type I IFN (IFN alpha or IFN beta; collectively 'IFN alpha beta) up-regulates class I MHC and IFN gamma up-regulates class I and class II MHC. We and others [1-3] have shown that transfection of cells with a variety of oncogenes including ras and myc affects the level of MHC antigen expression. This and other data provide evidence for a scheme in which the signal transduction mechanisms whereby IFN up-regulates MHC antigens involve several (proto) oncogenes.  相似文献   

15.
Lymphocytes from nonresponders to HBsAg fail to proliferate in vitro in the presence of HBsAg-pulsed antigen presenting cells. We studied four pairs of major histocompatibility complex (MHC)-matched, mixed lymphocyte reaction-negative individuals discordant for HBsAg response. For each pair, responder lymphocytes proliferated in the presence of nonresponder antigen-pulsed antigen presenting cells. Respondera nd nonresponder antigen presenting cells were equally effective. There was no evidence for inhibition of responder T-cell proliferation by nonresponder lymphocytes or antigen presenting cells. The defect is thus in the helper T cells of nonresponders and not in the antigen processing or binding of processed peptides to MHC molecules on antigen presenting cells.  相似文献   

16.
Synthetic peptide vaccines have potential to control viral infections. Successful experimental models using this approach include the protection of mice against the lethal Sendai virus infection by MHC class I binding CTL peptide epitope. The main benefit of vaccination with peptide epitopes is the ability to minimize the amount and complexity of a well-defined antigen. An appropriate peptide immunogen would also decrease the chance of stimulating a response against self-antigens, thereby providing a safer vaccine by avoiding autoimmunity. In general, the peptide vaccine strategy needs to dissect the specificity of antigen processing, the presence of B-and T-cell epitopes and the MHC restriction of the T-cell responses. This article briefly reviews the implications in the design of peptide vaccines and discusses the various approaches that are applied to improve their immunogenicity.  相似文献   

17.
An empirical method for the prediction of T-cell epitopes   总被引:6,自引:1,他引:5  
Identification of T-cell epitopes from foreign proteins is the current focus of much research. Methods using simple two or three position motifs have proved useful in epitope prediction for major histocompatibility complex (MHC) class I, but to date not for MHC class II molecules. We utilized data from pool sequence analysis of peptides eluted from two HLA-DR13 alleles to construct a computer algorithm for predicting the probability that a given sequence will be naturally processed and presented on these alleles. We assessed the ability of this method to predict know self-peptides from these DR-13 alleles, DRB1 *1301 and *1302, as well as an immunodominant T-cell epitope. We also compared the predictions of this scoring procedure with the measured binding affinities of a panel of overlapping peptides from hepatitis B virus surface antigen. We concluded that this method may have wide application for the prediction of T-cell epitopes for both MHC class I and class II molecules.  相似文献   

18.
Oncogenic transformation in human and experimental animals is not necessarily followed by the appearance of a tumor mass. The immune system of the host can recognize tumor antigens by the presentation of small antigenic peptides to the receptor of cytotoxic T-lymphocytes (CTLs) and reject the nascent tumor. However, cancer cells can sometimes escape these specific T-cell immune responses in the course of somatic (genetic and phenotypic) clonal evolution. Among the tumor immune escape mechanisms described to date, the alterations in the expression of major histocompatibility complex (MHC) molecules play a crucial step in tumor development due to the role of MHC antigens in antigen presentation to T-lymphocytes and the regulation of natural killer cell (NK) cell function. In this work, we have (1) updated information on the mechanisms that allow CTLs to recognize tumor antigens after antigen processing by transformed cells, (2) described the altered MHC class I phenotypes that are commonly found in human tumors, (3) summarized the molecular mechanisms responsible for MHC class I alteration in human tumors, (4) provided evidence that these altered human leukocyte antigens (HLA) class I phenotypes are detectable as result of a T-cell immunoselection of HLA class I-deficient variants by an immunecompetent host, and (5) presented data indicating the MHC class I phenotype and the immunogenicity of experimental metastatic tumors change drastically when tumors develop in immunodeficient mice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号